Chapter 10 Review

Key Words For #1 to #6, unscramble the letters. Use the clues to help you.

- 4. CRHDO _________ a line segment that has both endpoints on the circle

10.1 Exploring Angles in a Circle, pages 564–574

- 7. Find the measure of each angle.
 - a) $\angle ABD = ___^\circ$
 - b) ∠ACD

```
\angle ACD = 2 \times \_
```


- 8. What are the measures of angles *x* and *y*?
 - a) $\angle x = \underline{\qquad} \div 2$

=_____

b) ∠y

10.2 Exploring Chord Properties, pages 576–583

 $AE = AB \times 2$

=____×2

AE is _____ m.

=_____

10.3 Tangents to a Circle, pages 585–599

13. What is the measure of \angle FCG if DE is tangent to the circle?

If DE is tangent to the circle, then \angle EGC is _____°. In \triangle ECG, \angle GEC + \angle EGC + \angle ECG = 180°

 $43^{\circ} + \underline{\qquad}^{\circ} + \angle \text{ECG} = 180^{\circ}$

 $\angle ECG + \angle FCG = 180^\circ$, because $\angle FCE$ is a _____.

 $_$ ° + \angle FCG = 180°

The measure of \angle FCG is _____°.

14. If AB is tangent to the circle at B, what is the length of radius DC?

Find the length of DB using the Pythagorean relationship.

$$AB^2 + DB^2 = AD^2$$

diameter DB = _____ mm

radius DC = _____ mm

15. Jasmine was flying a remote-control airplane when it lost signal at a point tangent to the circle. It flew along this tangent until it crashed. How far did the plane travel before it crashed?

Use the ______ relationship to find the distance.

Sentence: