Check Your Understanding

Communicate the Ideas

1. Elliot says that AB is tangent to the circle because it touches the circle at 1 point.

Is he correct? Circle YES or NO.
Give 1 reason for your answer.

2. If BC is the radius, is AB tangent to the circle? Circle YES or NO.

Give 1 reason for your answer.

Practise

3. Line segment JK is tangent to the circle at point H . GH is a diameter and $\angle \mathrm{CGL}=10^{\circ}$.
a) $\triangle \mathrm{CGL}$ is an \qquad triangle.
(equilateral or isosceles)
Give 1 reason for your answer.
\qquad
\qquad
b) What is the measure of $\angle \mathrm{HCL}$?

$\angle \mathrm{HCL}$ and $\angle \mathrm{HGL}$ have the same arc, \qquad
$\angle \mathrm{HCL}$ is the \qquad angle.
$\angle \mathrm{HGL}$ is the \qquad angle.
$\angle \mathrm{HCL}=\angle \mathrm{HGL} \times$ \qquad
$=$ \qquad
c) What is the measure of $\angle \mathrm{GHJ}$? \qquad
Give 1 reason for your answer.

Name: \qquad
\qquad
4. AB is tangent to the circle at point D . BE contains the diameter EF .
$\angle \mathrm{ABE}=60^{\circ}$
a) What is the measure of $\angle \mathrm{BDC}$? Justify your answer.

Radius DC is \qquad to tangent AB .
So, $\angle \mathrm{BDC}$ is \qquad $\stackrel{\circ}{\circ}$

b) What is the measure of $\angle \mathrm{DCE}$? Justify your answer.

The sum of the angles in a triangle is \qquad ${ }^{\circ}$.

$$
\begin{aligned}
\angle \mathrm{BDC}+\angle \mathrm{DBC}+\angle \mathrm{DCB} & =Z^{\circ}{ }^{\circ} \\
\square^{\circ}+\square^{\circ}+\angle \mathrm{DCB} & =Z^{\circ} \\
\angle \mathrm{DCB} & =]^{\circ}
\end{aligned}
$$

$\angle \mathrm{DCB}$ and $\angle \mathrm{DCE}$ make a straight angle.

$$
\ldots+\angle \mathrm{DCE}=180^{\circ}
$$

$$
\angle \mathrm{DCE}=
$$

\qquad
c) What type of triangle is $\triangle \mathrm{CDE}$? \qquad

d) What is the measure of $\angle \mathrm{DEC}$? How do you know?

Use the arc DF. $\angle \mathrm{DEF}$ is an \qquad angle.

\angle DCF is the \qquad angle.

If $\angle \mathrm{DCF}$ measures \qquad ${ }^{\circ}$, then $\angle \mathrm{DEF}$ is half of that.

$$
\begin{aligned}
\angle \mathrm{DEF} & =\angle \mathrm{DCF} \div \square \\
& =-\quad \circ \div \square \\
& =
\end{aligned}
$$

$\angle \mathrm{DEF}=\angle \mathrm{DEC}$, so, $\angle \mathrm{DEC}$ is \qquad $\stackrel{\circ}{\circ}$.

Name: \qquad
\qquad
5. AB is tangent to the circle at point B .

BD is a diameter of the circle.
$\mathrm{AB}=6 \mathrm{~m}$
$\mathrm{AD}=10 \mathrm{~m}$
$\triangle \mathrm{BCE}$ is an equilateral triangle.

a) What is the length of diameter BD ?

Justify your answer.

$\angle \mathrm{ABD}$ is \qquad ${ }^{\circ}$ because AB
is \qquad to BD.

Formula \rightarrow
Substitute \rightarrow
Solve \rightarrow
c) What is the measure of the inscribed angle $\angle \mathrm{BED}$?

$\angle \mathrm{BCD}$ is \qquad $\stackrel{\circ}{\circ}$.
$\angle \mathrm{BED}$ is an inscribed angle.
$\angle \mathrm{BED}=\angle \square$ \qquad
$\angle \mathrm{BED}=$ \qquad \div \qquad
$\angle \mathrm{BED}=$ \qquad
So, $\angle \mathrm{BED}$ is \qquad ${ }^{\circ}$.
d) What is the length of chord DE to the nearest metre? Justify your answer.

Use \triangle DEB.
Formula \rightarrow
Substitute \rightarrow

Solve \rightarrow

The length of DE is \qquad m.

Name: \qquad Date: \qquad
6. A dog is on a leash tied to a pole in the backyard. The leash is 5 m long.
The back of the house is tangent to the circle at the edge of the house.
a) What is the distance from the pole to the cat door?

Formula \rightarrow
Substitute \rightarrow
Solve \rightarrow

The distance from the pole to the cat door is \qquad m.
b) How close can the dog get to the cat door?

Find the distance from the edge of the circle to the cat door.

Sentence: \qquad

Apply

7. Line l is tangent to the circle.

Find the length of x in the diagram.
Write your answer to the nearest tenth (1 decimal place).
x is the same length as side \qquad of $\triangle F E G$.
$\triangle \mathrm{FEG}$ is a \qquad triangle.

Sentence: \qquad

Name: \qquad Date: \qquad
8. Find the measure of $\angle \mathrm{QRT}$.

SP is tangent to the circle at point S .
RS is perpendicular to SP .
$\angle \mathrm{SPQ}=74^{\circ}$
$\triangle \mathrm{PSQ}$ is a \qquad triangle, so $\angle \mathrm{PSQ}$ is \qquad $\stackrel{\circ}{ }$.

The 3 angles in a triangle add up to \qquad $\stackrel{\circ}{\circ}$.
$\angle \mathrm{PQS}+$ \qquad $+$ \qquad $=$ \qquad
$\angle \mathrm{TQS}$ is an inscribed angle to the central angle $\angle \mathrm{TRS}$.
$\mathrm{So}, \angle \mathrm{TRS}=\angle \mathrm{PQS} \times$ \qquad
$\angle \mathrm{TRS}=$ \qquad \circ
$\angle \mathrm{QRS}=$ \qquad \circ

$$
\angle \mathrm{QRT}+\angle \mathrm{TRS}=ـ^{\circ}
$$

$$
\angle \mathrm{QRT}+ـ^{\circ}{ }^{\circ}=ـ^{\circ}
$$

$\angle \mathrm{QRT}+$ \qquad ${ }^{\circ}$ - \qquad ${ }^{\circ}=$ \qquad ${ }^{\circ}-$ \qquad。

$$
\angle \mathrm{QRT}=\square^{\circ}
$$

Sentence: \qquad .
9. The circles are exactly the same size.

Line l is tangent to both circles.
The radius is 5 cm .
What is the perimeter of the rectangle? Label the diagram to show your explanation.

Sentence: \qquad

