$$
\text { Math } 9
$$

Year in Review

Chapter $1 \rightarrow$ Symmetry \& Surface Area

Chapter $2 \rightarrow$ Rational Numbers
Chapter $3 \rightarrow$ Exponents \& Exponent Laws
Chopter $4 \rightarrow$ Scale Ratio \& Similarity
Chapter $5 \rightarrow$ Adding \& Subtracting Polynomials

Chapter $7 \rightarrow$ Multiplyino \& Dividino Polynomials
Chapter $6 \rightarrow$ Lineor Relations
Chapter $8 \rightarrow$ Linear Equations
Chopter $9 \rightarrow$ Lineor Inequalities
Chapter $10 \rightarrow$ Circle Geometry
Chapter $11 \rightarrow$ Data Collection
Chopter Review Activities

Symmetry \& Surface Area

Chapter 1 Review

Chapter 1 - SYMMETPY And Surface Area

What does symmetry mean?

Chapter I - Symmetry and Surface Area

What does symmetry mean?

Symmetry is when an object matches up with itself. Symmetry can be described has either having Line Symmetry, Rotational Symmetry or both.

Chaperer - Symmetry and Surface Area 1.1 Line Symmetry

What is Line Symmetry?

Chaperer - Symmetry and Surface Area 1.1 Line SYMMetip

What is Line Symmetry?

Line Symmetry can also be referred to as mirror symmetry. It is when two halves of an object are identical to one another as if it is a mirror image.

Line symmetry can be determined by splitting an image precisely in half (folding or drawing a line) and seeing if both sides match up to one another perfectly.

Chapter I - Symmetry and Surface Area 1.1 Line Symmetry

Types of Line Symmetry.
What types (or directions) of line symmetry are used to describe images?

Chapter l - SYMMETRY AND SURFace Area l.1 Line Symmetry

Types of Line Symmetry.
What types (or directions) of line symmetry are used to describe images?

Chapter I - Symmetry and Surface Area l. Line Symmetry

How many lines of symmetry do the following images have?
bid

Chapter I - Symmetry and Surface Area l.1 Line Symmetry

How many lines of symmetry do the following images have?

Chapter I - Symmetry and Surface Area
1.2 Rotational Symmetry

What is Rotational Symmetry?

Chapter I - Symmetry and Surface Area 1.2 Rotational Symmetry

What is Rotational Symmetry?

Rotational Symmetry is when an image can be rotated or turned around its center and matches its own original image perfectly at least once during one full rotation.

CHAPTER I - SYMMETRY AND SURFACE AREA l.1 Line Symmetry

Center of Rotation

Chapter I - Symmetry and Surface Area 1.1 Line Symmetry

Center of Rotation

Center of Rotation is the center of the image and the point at which an image rotates around.

CHAPTER I - SYMMETRY AND SURFACE AREA 1.2 Rotational Symmetry

Order of Rotation

Chapter I - Symmetry and Surface Area 1.2 ROtational Symmetry

Order of Rotation

Order of Rotation is the number of times an image matches its own original image perfectly during one full rotation around its center of rotation. You include the original position but only once.

Chapter 1 - Symmetry and Surface Area 1.2 Rotational Symmetry

Angle/Degree of Rotation

Chapter I - Symmetry and Surface Area 1.2 ROtational Symmetry

Angle/Degree of Rotation

Angle of Rotation is the minimum measure of the angle needed to turn a shape or design onto itself.

You get this measurement by taking one full turn in degrees $\left(360^{\circ}\right)$ and dividing it by the Order of Rotation (the number of times the image matches itself during that turn).

CHAPTER I - SYMMETRY AND SURFACE AREA 1.2 ROtational Symmetry

Fraction of a Turn

CHAPTER I - SYMMETRY AND SURFACE AREA 1.2 ROtational Symmetry

Fraction of a Turn

Fraction of a Turn is the minimum amount of a turn needed to rotate a shape or design onto itself.

You get this measurement by taking one full turn (1) and dividing it by the Order of Rotation (the number of times the image matches itself during that turn).

What is the Order of Rotational symmetry of each shape? What is the Angle of Rotation in degrees and as a fraction? What is the Fraction of a Turn

Chapter I - Symmetry and Surface Area

1.2 ROTATIONAL SYMMETRY

What is the Order of Rotational symmetry of each shape? What is the Angle of Rotation in degrees and as a fraction? What is the Fraction of a Turn

Order of Rotation: 2
Angle of Rotation:
$360^{\circ} / 2$
$\Rightarrow 180^{\circ}$
Fraction of a Turn: ½

Order of Rotation: 3
Angle of Rotation:
$360^{\circ} / 3$
$\Rightarrow 120^{\circ}$
Fraction of a Turn: $1 / 3$

Order of Rotation: 8 Angle of Rotation: $360^{\circ} / 8$
$\Rightarrow 45^{\circ}$
Fraction of a Turn: 1/8

What is the order of rotational symmetry of each shape? What is the angle of rotation in degrees and as a fraction? What is the fraction of a turn

Chaprer 1 - Symmetry and Surface Area 1.2 Rotational SYMMETPY

What is the order of rotational symmetry of each shape? What is the angle of rotation in degrees and as a fraction? What is the fraction of a turn

Order of Rotation: 4 Angle of Rotation: 360\%/4
$\Rightarrow 90^{\circ}$
Fraction of a Turn: $1 / 4$

Order of Rotation: 3 Angle of Rotation: 360/3
$\Rightarrow 120^{\circ}$
Fraction of a Turn: $1 / 3$

Order of Rotation: 1 Angle of Rotation: 360ㅇ/1
$\Rightarrow 360^{\circ}$
Fraction of a Turn: 1

Order of Rotation: 5 Angle of Rotation: 360잉
$\Rightarrow 72^{\circ}$
Fraction of a Turn: $1 / 6$

CHAPTER I - SYMMETRY AND SURFACE AREA 1.1 \& 1.2 Line \& ROTATIONAL SYMMETRY

Determine if the following shapes has line symmetry, rotational symmetry or both. How many lines of symmetry does each shape have? What is the order of rotation? What is the Fraction of Turn?

Chapter I - Symmetry and Surface Area $1.1 \& 1.2$ Line \& ROTATIONAL SYMMETRY

Determine if the following shapes has line symmetry, rotational symmetry or both. How many lines of symmetry does each shape have? What is the order of rotation? What is the Fraction of Turn?

Line Symmetry: none Order of Rotation: 4 Angle of Rotation: $360^{\circ} / 4$
$\Rightarrow 90^{\circ}$
Fraction of a Turn: $1 / 4$

Line Symmetry: 5 Order of Rotation: 5 Angle of Rotation: 360 $/ 5$
$\Rightarrow 72^{\circ}$
Fraction of a Turn: $1 / 5$

Line Symmetry: 8
Order of Rotation: 8 Angle of Rotation: 360%
$\Rightarrow 45^{\circ}$
Fraction of a Turn: $1 / 8$

Line Symmetry: 4 Order of Rotation: 4 Angle of Rotation: 360/4
$\Rightarrow 90^{\circ}$
Fraction of a Turn: $1 / 4$

Chapter I - Symmetry and Surface Area 1.3 Surface AReA

What is Surface Area?

Chaperer - Symmetry and Surface Area
 1.3 Surface AReA

What is Surface Area?

Surface Area is the total area of all surfaces present on an object. The easiest way to determine surface area is to label all surfaces (sides) of the object and determine the area, then calculate the total area.*

* Watch out for areas that missing or covered by other parts of the object.

Chapter 1-SYmmetey and Surface Area 1.3 Surface ARea

Area Formulas

Chapter I - SYMMETRY And Surface Area 1.3 Surface Area

Area Formulas

Area $=($ Base \times Height $)$

Area $=($ Base \times Height $) \div 2$

Circumference: π d ($2 \pi r$)

Chapter 1 - SYMmetiv and Surface Area 1.3 Surface AReA

What is the Surface Area of the following images?

Chapter I - Symmetry and Surface Area 1.3 Surface ARra

What is the Surface Area of the following images?

3 in

Chaperer - Symmetry and Surface Area L.3 Surface ARra

What is the Surface Area of the following images?

3 in

$$
\begin{aligned}
& =12 \mathrm{in}^{2}+16 \mathrm{in}^{2}+24 \mathrm{in}^{2} \\
& =52 \mathrm{in}^{2}
\end{aligned}
$$

Sides: Front, Back, Left, Right, Top, Bottom
Front/Back (2 sides; Rectangles)
$=$ Number of sides \times Area of sides $(b \times h)$
$=2(2 \times 3)$
$=2(6)$
$=12 \mathrm{in}^{2}$
Left/Right (2 sides, Rectangles)
$=$ Number of sides \times Area of sides $(b \times h)$
$=2(2 \times 4)$
$=2(8)$
$=16 \mathrm{in}^{2}$
Top/Bottom (2 sides, Rectangles)
$=$ Number of sides \times Area of sides $(b \times h)$
$=2(4 \times 3)$
$=2(12)$
$=24 \mathrm{in}^{2}$

Chapter I - Symmetry and Surface Area 1.3 Surface AReA

What is the Surface Area of the following images?

Chapter I - Symmetry and Surface Area 1.3 Surface AReA

What is the Surface Area of the following images?


```
Sides: Top, Bottom, Side
Top/Bottom (2 sides, Circles)
\(=\) Number of sides \(\times\) Area of sides \(\left(\pi r^{2}\right)\)
\(=2\left(\pi 2^{2}\right)\)
\(=2(\pi 4)\)
\(=2(12.56)\)
\(=25.1 \mathrm{~m}^{2}\)
Side (1 side, Rectangle)
\(=\) Number of sides \(\times\) Area of sides ( \((\pi d) \times h\) )
\(=1((\pi \times 4) \times 4)\)
\(=1(12.56 \times 4)\)
\(=50.3 \mathrm{~m}^{2}\)
\(=25.1 \mathrm{~m}^{2}+50.3 \mathrm{~m}^{2}\)
\(=75.4 \mathrm{~m}^{2}\)
```


Chapter I - Symmetry and Surface Area 1.3 Surface Area

What is the Surface Area of the following images?

Chapter I - Symmetry and Surface Area 1.3 Surface AReA

What is the Surface Area of the following images?

$$
\begin{aligned}
& =12 \mathrm{~cm}^{2}+10 \mathrm{~cm}^{2}+8 \mathrm{~cm}^{2}+6 \mathrm{~cm}^{2} \\
& =36 \mathrm{~cm}^{2}
\end{aligned}
$$

Sides: Front, Back, Ramp, Bottom, Left
Top/Bottom (2 sides, Triangles)
$=$ Number of sides \times Area of sides $(b \times h \div 2)$
$=2(4 \times 3 \div 2)$
$=2(12 \div 2)$
$=2(6)$
$=12 \mathrm{~cm}^{2}$
Ramp (1 side, Rectangle)
$=$ Number of sides \times Area of sides $(b \times h)$
$=1(2 \times 5)$
$=10 \mathrm{~cm}^{2}$
Bottom (1 side, Rectangles)
$=$ Number of sides \times Area of sides $(b \times h)$
$=1(4 \times 2)$
$=8 \mathrm{~cm}^{2}$
Left (1 side, Rectangles)
$=$ Number of sides \times Area of sides ($b \times h$)
$=1(2 \times 3)$
$=6 \mathrm{~cm}^{2}$

Chapter I - Symmetry and Surface Area 1.3 SURFACE AREA

What is the Surface Area of the following images?

Chapter 1 - SYMMETRY AND SUPFACE AREA1.3 Surface AReA

$=117.8 \mathrm{~cm}^{2}+31.4 \mathrm{~cm}^{2}+62.8 \mathrm{~cm}^{2}$
$=212 \mathrm{~cm}^{2}$

Sides: Top, Bottom, Inside SMALL, Outside ${ }^{\text {BIG }}$

```
Top/Bottom (2 sides; Circles)
= Number of sides x Area of sides ( }\pi\mp@subsup{r}{}{2}\mp@subsup{\textrm{BIG}}{}{\mathrm{ - }}\pi\mp@subsup{r}{}{2}\mathrm{ SMALL }
=2((\pi\mp@subsup{5}{}{2})-(\pi2.5
=2((\pi\times25)-(\pi\times6.25))
=2(78.5-19.6)
= 2(58.9)
= 117.8 cm
Inside of Small Circle (1 side, Rectangle)
= Number of sides }\times\mathrm{ Area of sides (( }\pid)\timesh
=1((\pi\times5)\times2)
= 1(15.7\times2)
= 31.4 cm
Outside of Large Circle (1 side, Rectangle)
= Number of sides }\times\mathrm{ Area of sides (( }\pi\textrm{d})\timesh
=1(( }\pi\times10)\times2
=1(31.4\times2)
= 62.8 cm
```


Rational Numbers

Chapter 2 Review

Chaprer 2 - Rational Numbers
Adding Integers

Chapter 2 - RATiONAL Numbers

Adding Integers

Same Signs: Add the values of the numbers together and use the same sign as the values.

Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the largest value.

Chapter 2 - Rational Numbeis

Adding Integers \rightarrow Practice

$$
-2+-5 \quad 3+-8 \quad-23+-4 \quad 52+-15
$$

Chapter 2 - Rational Numbers

Subtracting Integers

Chapter 2 - RATiONAL Numbers

Subtracting Integers

KiSS \rightarrow Keep it, Switch it, Switch it.
\rightarrow Keep the sign of the first value
\rightarrow Switch the subtraction to an addition sign
\rightarrow Switch the sign of the second value
\rightarrow Continue as an addition problem
Same Signs: Add the values of the numbers together and use the same sign as the values.

Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the largest value.

Chapter 2 - RATiONAL Numbers

Subtracting Integers \rightarrow Practice

$$
2-(-7) \quad-9-3 \quad-12-(-15) \quad 44-36
$$

Chapter 2 - Rational Numbees

Multiplying and Dividing Integers

Chapter 2 - Rational Numbees

Multiplying and Dividing Integers

Same Signs: Multiply or Divide as normal. The result is a positive.

Different Signs: Multiply or Divide as normal. The result is a negative.

Chapter 2 - Rational Numbees
Multiplying and Dividing Integers \rightarrow Practice

$$
-2 \times 5 \quad-12 \times-4 \quad 8 \times 7 \quad 9 \times-6
$$

$-12 \div 4 \quad-144 \div-12$
$48 \div 8$
$32 \div-4$

Chapter 2 - Rational Numbers
Mixed Numbers to Improper Fractions

Mixed Numbers to Improper Fractions

1. Multiply the denominator (bottom number) by the whole number.
2. Add the product from step 1 to the numerator. This becomes the new numerator.
3. Denominator remains the same.

Chapter 2 - Rational Numbers Mixed Numbers to Improper Fractions

Chapter 2 - Rational Numbers

Improper Fractions to Mixed Numbers

Chapter 2 - Rational Numbers

Improper Fractions to Mixed Numbers

1. Divide the numerator (top number) by the denominator (bottom number).

- The whole number quotient is the new whole number in the Mixed Fraction

2. Multiply the whole number from step 1 to the denominator and subtract it from the numerator.

- The remainder becomes the new numerator.

3. Denominator remains the same.

Chaprer 2 - Rational Numbers

 Improper Fractions to Mixed Numbers

Chapter 2 - Rational Numbers
Adding and Subtracting Fractions

Chapter 2 - RATIONAL NuMbERS

Adding and Subtracting Fractions

1. Convert all fractions to improper/proper fractions
2. Find the Lowest Common Multiple (LCM) to determine the new denominator
3. Convert all the fractions into equivalent fractions with the LCM as the new denominator

- Multiply both the numerator and denominator by the same value

4. Add or Subtract the numerators using the Integer Operation Rules. Keep the denominator the same.
5. Simplify by dividing the numerator and denominator by the same value.

Chapter 2 - Rational Numbers
Adding and Subtracting Fractions

Chapter 2 - Rational Numbers

 Multiplying and Dividing Fractions
Chaprer 2 - Rational Numbers

Multiplying Fractions

1. Convert all fractions to improper/proper fractions
2. Multiply the numerators by each other using Integer Operation Rules.
3. Multiply the denominator by each other using Integer Operation Rules..
4. Simplify by dividing the numerator and denominator by the same value.

Chapter 2 - RATIONAL NuMbERS
 Dividing Fractions

1. Convert all fractions to improper/proper fractions
2. Apply KiSS Method

- Keep first fraction
- Switch sign from division to multiplication
- Switch your second fraction by flipping it.

3. Multiply the numerators by each other using Integer Operation Rules.
4. Multiply the denominator by each other using Integer Operation Rules.
5. Simplify by dividing the numerator and denominator by the same value.

Chapter 2 - Rational Numbers

 Multiplying and Dividing Fractions
Chapter 2 - RATiONAL Numbers

Greater Than \& Less Than

What one's which?

Chapter 2 - RATiONAL Numbers

Greater Than \& Less Than

What one's which?

Less Than

Greater Than

Less Than or Equal To

Greater Than or Equal To

Chapter 2 - Rational Numbers

Greater Than \& Less Than

Chapter 2 - Rational Numbeiss
 Order of Operations

What is the Order Of Operations?

Chapter 2 - RATiONAL Numbers
 Order of Operations

What is the Order Of Operations?

B

M

Chapter 2 - Rational Numbeiss
 Order of Operations

What is the Order Of Operations?

Brackets

Exponents

Division

Multiplication

Addition

Subtraction

Chapter 2 - Rational Numbeiss
 Order of Operations

What is the Order Of Operations?

$$
\begin{aligned}
& \text { Exponents \& } \\
& \text { Exponent LaWs }
\end{aligned}
$$

Chapter 3 Review

Chapter 3 - Elponents and Elponent Laws

What are exponents?

Chapter 3 - Exponents and Exponent Laws

What are exponents?

Exponents are a way to write repeated multiplication in a shorter, condensed format.
le. $5 \times 5 \times 5=5^{11}$

Chaprer 3 - Exponents and Exponent Laws

Parts of an Exponent

Chapter 3 - Exponents and Exponent Lavs

Parts of an Exponent

Base \rightarrow The number you multiply by itself $\Rightarrow 4$

Power/Exponent \rightarrow The number of times you multiply the base. $\Rightarrow 3$
$\Rightarrow 4 \times 4 \times 4$

Chapter 3 - Elponents and Exponent Laws

Exponent Laws

Chapter 3 - Exponenis and Elponent Laws

Exponent Laws

Exponent Laws are rules to follow in order to simplify exponent problems to make them easier to work with.

Chapter 3 - Exponents and Exponent Lavs

Product Law

What it looks like...
$x^{m} \cdot x^{n}$
Identical bases being multiplied together.

Chapter 3 - Exponents and Exponent Lavs

Product Law

$x^{m} \cdot x^{n}$
$=x^{m+n}$

CHAPTER 3 - ExPONENTS AND ExpONENT LAWS

Quotient Law

What it looks like...
$x^{m} \div x^{n}$
Identical bases being dividing by one another.

Chapter 3 - Exponenis and Elponent Laws

Quotient Law

What it looks like...
$x^{m} \div x^{n}$
$=x^{m-n}$

Chapter 3 - Exponents and Exponent Lavs

Power Law

What it looks like...
$\left(\rho^{m}\right)^{n}$
A base being raised to an exponent inside brackets with a second exponent on the outside of the brackets.

Chapter 3 - Exponents and Exponent Lavs

Power Law

What it looks like...
$\left(o^{m}\right)^{n}$
$\rho^{m \cdot n}$

CHAPTER 3 - ExPONENTS AND ExpONENT LAWS

Zero Exponent Law

What it looks like...
r^{0}
Any base being raised to the exponent of 0 .

Chapter 3 - Elponents and Exponent Laws

Zero Exponent Law

What it looks like...
r^{0}
$=1$

Chapter 3 - Exponents and Exponent Laws

 Negative Exponent LawWhat it looks like...
w^{-6}
Any base being raised to a negative exponent.

CHAPTER 3 - EXPONENTS AND EXPONENT LAWS Negative Exponent Law

What it looks like...
W^{-m}
$=1 / w^{m}$

Chapter 3 - Exponents and Exponent Laws

Power of a Product Law

What it looks like...
$(x \cdot y)^{m}$
2 or more numbers being multiplied by one another, then raised to an exponent.

Chapter 3 - Elponents and Elponent Laws

Power of a Product Law

What it looks like...
$(x \cdot y)^{m}$
$x^{m} \cdot y^{m}$

Chapter 3 - Exponents and Exponent Lavs

Power of a Quotient Law

What it looks like...
$(x \div y)^{m}$
2 numbers being divided, then raised to an exponent.

Chaprer 3 - Exponents and Exponent Laws

Power of a Quotient Law

What it looks like...

$$
\begin{aligned}
& (x \div y)^{m} \\
& x^{m} \div y^{m}
\end{aligned}
$$

Scale Images

Chapter 4 Review

Chapter 4- Scale Images and Similarity

Scale Factor

Chapter 4 - Scale IMages and Similarity

Scale Factor

In two similar geometric figures, the ratio of their corresponding sides is called the Scale Factor.

The Scale Factor is the value you multiply the original image by to get the new image.

Chapter 4 - Scale Images and Similarity

How do you find the Scale Factor?

Chapter 4 - Scale IMages and Similarity

How do you find the Scale Factor?

To find the scale factor, locate two corresponding sides, one on each figure, and write the ratio of one length to the other.

Chapter 4- Scale Images and Similarity

Scale Factors

What happens to an image if you have a Scale Factor...
<1
>1
$=1$

Chapter 4- Scale Images and Similarity

Scale Factors

What happens to an image if you have a Scale Factor...
$<1 \Rightarrow$ image will get smaller
$>1 \Rightarrow$ image will get larger
$=1 \Rightarrow$ image will stay the same

CHAPTER 4 - SCALE IMAGES AND SIMILARTTY
 Setting Up Scale Factors

How do you set up a scale factor in terms of the diagram vs the actual object?

Chapter 4 - SCALE IMAGES AND SIMILARTTY

Setting Up Scale Factors

To find the scale factor, locate two corresponding sides, one on each figure, and write the ratio of one length to the other.

Scale Factors are shown as a ratio or as a fraction in one of the following ways.

- original : new OR ${ }^{\text {original }}$ new
- diagram : actual. OR diagram/ actual

Chapter 4- Scale Images and Similarity
 Corresponding Angles/Sides

Chapter 4- Scale Images and Similarity

Corresponding Angles/Sides

Corresponding angles and corresponding sides are the angle or side in the same location on each shape.

Chapter 4- Scale Images and Similarity

Corresponding Angles/Sides

Corresponding angles and corresponding sides are the angle or side in the same location on each shape.

Chapter 4- Scale Images and Similarity

Proportional

Chapter 4 - Scale IMages and Similarity

Proportional

Proportional means to have the same ratio. If the sides of two triangles are proportional, then each set of corresponding sides have the same scale ratio (original/ new)

Chaprer 4- Scale Images and Similarity

Types of Triangles

Chapter 4- Scale Images and Similarity
Types of Triangles

Chapter 4- Scale Images and Similarity

 Types of Triangles

Equilateral

Isosceles

Scalene

Chapter 4- Scale Images and Similarity

Types of Triangles

Equilateral
3 equal sides 3 equal angles

Isosceles
2 equal sides
2 equal angles

Scalene
0 equal sides
0 equal angles

Adding E Subtracting Polynomials

Chapter 5 Review

Chapter 5 - Adoding and Subtracting Polynomials

 Parts of a Polynomial
CHAPTER 5 - Adding and Subtracting Polynomials

 Parts of a Polynomial$$
-8 x^{4}-5 x^{3}-3 x^{2}+7 x+13
$$

CHAPTER 5 - Adding and Subtracting Polynomials

 Parts of a Polynomial

Coefficient Exponent Variable TermConstant

CHAPTER 5 - Adding and SubTracting Polynomials
 Parts of a Polynomial

Coefficient: the number before the variable. If no number is present, it is a 1. Variable: the unknown, usually represented by a letter

Term: is a single number, variable, or numbers and variables multiplied together, which are separated by + or - signs.

Exponent: the small number after a variable. If no number is present, but there is a variable, the exponent value is 1.

Constant: the number on its own without a variable.

Chapter 5 - Adding and Subtracting Polynomials

 Parts of a Polynomial$$
-4 x^{4}-2 x^{3}-x^{2}+9 x+25
$$

Chapter 5 - Adoing and Subtracting Polynomials Naming Polynomials

Chapter 5 - Adoing and Subtracting Polynomials
 Naming Polynomials

Number of Terms	Name	Example
1		
2		
3		
4 or more		

Chapter 5 - Adding and Subtracting Polynomials Naming Polynomials

Number of Terms	Name	Example
1	monomial	$5 x\|-7\| 12 x y z$
2	binomial	$2 x+3\|5 y-x\| x+y$
3	trinomial	$3 x^{2}+2 x-5 \mid x y z+3 x+7$
4 or more	polynomial	$x^{3}-2 x^{3}+11 x^{2}-3$

Chapter 5 - Adoing and Subtracting Polynomials Naming Polynomials

$x^{3}-4 x^{3}+x^{2}-3$
$2 x+3 y$

12wxyz

$$
x y z+3 x+7
$$

Chapter 5 - Adoding and Subtracting Polynomials

 Degree of a Term
CHAPTER 5 - AdDING AND SUBTRACTING POLYNOMIALS

Degree of a Term

1. Look for the variables (the letters within the term)
2. Look for the exponents attached to each variable. If not exponent is present, the exponent is 1.
3. Add the exponents of each variable together. This is your degree for the term.

Chapter 5 - Adding and Subtracting Polynomials

 Degree of a Term$-4 x^{4} y-2 x^{3}-x^{2} z+9 y+25$

Chapter 5 - Adding and Subtracting Polynomials Degree of a Polynomial

Chapter 5 - Adding and Subtracting Polynomials

Degree of a Polynomial

1. Follow the steps to determine the Degree of a Term to determine the degree of each term of the polynomial.
2. The highest value Degree of a Term is the Degree of the entire Polynomial

Chapter 5 - Adding and Subtracting Polynomials

 Degree of a Polynomial $-2 x^{4} y-5 x^{3}-3 x^{2} z^{2}+9 z^{3}+2$
Chapter 5 - Adding and Subtracting Polynomials Modelling Polynomials

Chapter 5 - Adding and Subtracting Polynomials Modelling Polynomials

Chapter 5 - Adding and Subtracting Polynomials

 Modelling Polynomials

$$
\begin{array}{llllll}
+x^{2} & -x^{2} & +x & -x & +1 & -1
\end{array}
$$

Chapter 5 - Adding and Subtracting Polynomials

 Modelling Polynomials

CHAPTER 5 - Adding and Subtracting Polynomials Like Terms

Chapter 5 - Adding and Subtracting Polynomials Like Terms

Like Terms have the same combination of variables with the same corresponding exponents.

Chapter 5 - Adding and Subtracting Polynomials

 Determine the Like Terms Below$3 x \quad 9 x y \quad x^{2} \quad x^{2} y^{3} \quad 5 x y \quad x y z \quad 4 x^{2} y^{3}$
$-4 x \quad 9 x^{2} \quad 12 x y z \quad 5 x \quad-2 x z y \quad 4 x^{2}$

Chapter 5 - Adoing and Subtracting Polynomials Adding Polynomials

Chapter 5 - Adoing and Subtracting Polynomials

Adding Polynomials

To add polynomials, just combine like terms using the integer rules.

- Same Signs: Add the values of the numbers together and use the same sign as the values.
- Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the lorgest value.

Chapter 5 - Adding and Subtracting Polynomials

 Adding the following Polynomials $5 x^{2}+3 x-5$ and $-3 x^{2}+4 x-7$Chapter 5 - Adding and Subtracting Polynomials Adding the following Polynomials $5 x^{2}+3 x-5$ and $-3 x^{2}+4 x-7$
$=\left(5 x^{2}+3 x-5\right)+\left(-3 x^{2}+4 x-7\right)$
$=5 x^{2}-3 x^{2}+3 x+4 x-5-7$
$=2 x^{2}+7 x-12$

Chapter 5 - Adding and Subtracting Polynomials Opposite Polynomials

CHAPTER 5 - ADDING AND SubTRACTING POLYNOMIALS

Opposite Polynomials

To create opposite polynomials, simply switch the sign of each term of the polynomial to the opposite.

- If it was a positive, switch it to a negative. $+\longrightarrow-$
- If it was a negative, switch it to a positive. $-\longrightarrow+$

Chapter 5 - Adding and Subtracting Polynomials

Opposite Polynomials

Change each of the following to the opposite polynomial

$$
-5 x \quad 3 x^{2}+5 x \quad-x^{2}-4 x+3
$$

CHAPTER 5 - ADDING AND SubTRACTING POIYNOMIALS Subtracting Polynomials

Chapter 5 - Adding and Subtracting Polynomials Subtracting Polynomials

1. Apply KiSS Method

Keep first polynomials
Switch sign from subtraction to addition
Switch each of the signs from the second polynomial to its opposite
2. Treat it like an addition problem and combine like terms using the integer rules.

- Same Signs: Add the values of the numbers together and use the same sign as the values.
- Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the largest value.

Chapter 5 - Adding and Subtracting Polynomials

 Subtract $\left(-3 x^{2}+4 x-7\right)$ from $\left(5 x^{2}+3 x-5\right)$Chapter 5 - Adding and Subtracting Polynomials
Subtract $\left(-3 x^{2}+4 x-7\right)$ from $\left(5 x^{2}+3 x-5\right)$
$=\left(5 x^{2}+3 x-5\right)-\left(-3 x^{2}+4 x-7\right)$
$=\left(5 x^{2}+3 x-5\right)+\left(+3 x^{2}-4 x+7\right) \Rightarrow$ KiSS
$=\left(5 x^{2}+3 x-5\right)+\left(+3 x^{2}-4 x+7\right)$
$=5 x^{2}+3 x^{2}+3 x-4 x-5+7$
$=8 x^{2}-1 x+2$

$$
\begin{aligned}
& \text { Multiplying \& } \\
& \text { Dividing } \\
& \text { Polynomials }
\end{aligned}
$$

Chapter 7 Review

Chaprer $]$ - Mulitipying and Dividing Poynomials

 Multiplying Monomials - Tile Area Models
Chapter] - Multipying and Dividing Polynomials Multiplying Monomials - Tile Area Models

Remember... area is length \times width.
What expressions are shown below?

Chapter] - Multipying and Dividing Polynomials Multiplying Monomials - Tile Area Models

So what does the following image represent?

CHAPTER] - MultipyYing and Dividing Polynomials Multiplying Monomials - Tile Area Models

So what does the following image represent?

$$
\begin{aligned}
& \Rightarrow 2 x \cdot x \\
& =2 x^{2}
\end{aligned}
$$

CHAPTER] - MULTTPYYiNg AND Dividing Polynomials Multiplying Monomials - Tile Area Models

What expression would the following represent?

CHAPTER] - MULTTPYYiNg AND Dividing Polynomials Multiplying Monomials - Tile Area Models

What expression would the following represent?

CHAPTER] - MULTTPYYiNg AND Dividing Polynomials Multiplying Monomials - Tile Area Models

What expression would the following represent? What would it equal?

Chaprer $]$ - Mulitipying and Dividing Poynomials

Multiplying Monomials - Tile Area Models

What expression would the following represent? What would it equal?

Chapter] - Multipying and Dividing Polynomials Multiplying Monomials - Algebraically

CHAPTER] - MULTTPYYiNg AND Dividing Polynomials Reminder...

Product Law

What it looks like...identical bases being multiplied together.

$$
x^{m} \cdot x^{n}
$$

Simplification Law:

$$
=x^{m+n}
$$

Chaprer $]$ - Multipying and Dividing Poynomials

Multiplying Monomials - Algebraically

When you multiply monomials together...

1. Multiply the coefficients together
2. Multiply each variable together following the Product Law. (add your exponents)

Ex.

$$
5 x \cdot 6 x y \Rightarrow(5 \cdot 6)(x \cdot x y) \Rightarrow 30(x \cdot x \cdot y) \Rightarrow 30 x^{2} y
$$

Chaprer $]$ - Multipying and Dividing Poynomials Multiplying Monomials - Algebraically

Practice

Chapter] - Multipyying and Dividing Polynomials Dividing Monomials - Tile Models

How would you set up $24 x^{2} \div 3 x$?

CHAPTER] - MULTTPYYiNg AND Dividing PolynOMIALS Dividing Monomials - Tile Models

How would you set up $24 x^{2} \div 3 x$?

Chapter] - Multipying and Dividing Polynomials Dividing Monomials - Tile Models

How would you set up $24 x^{2} \div 3 x$?
What is $24 x^{2} \div 3 x$? How do you determine this?

Chapter] - Multipying and Dividing Polynomials Dividing Monomials - Tile Models

How would you set up $24 x^{2} \div 3 x$?
What is $24 x^{2} \div 3 x$? How do you determine this?

Chapter] - MULTIPYying and Dividing Polynomials Dividing Monomials - Algebraically

CHAPTER] - Multiplying and Dividing Polynomials Reminder...

Quotient Law

What it looks like...identical bases being dividing by one another.

$$
x^{m} \div x^{n}
$$

Simplification Law:

$$
=x^{m-n}
$$

CHAPTER] - Multiplying and Dividing Polynomials Dividing Monomials - Algebraically

When you divide monomials...

1. Divide the coefficients
2. Divide each variable following the Quotient Law. (subtract your exponents)

Ex.

$$
36 x y \div 6 x \Rightarrow(36 \div 6)(x y \div x) \Rightarrow 6(y \cdot x \div x) \Rightarrow 6 y
$$

CHAPTER] - Multiplying and Dividing Polynomials Dividing Monomials - Algebraically

Practice

Chaprer $]$ - Mulitipying and Dividing Poynomials

 Multiplying Monomials by Polynomials Area ModelWhat does a polynomial area model look like?

Chapter $]$ - Mulitipying and Dividing Polynomials

 Multiplying Monomials by PolynomialsArea Model
What does a polynomial area model look like?

Chapter $]$ - Mulitipying and Dividing Polynomials

 Multiplying Monomials by PolynomialsArea Model
What does a polynomial area model look like? What would this model give you?

Chaprer $]$ - Mulitipying and Dividing Polynomials

Multiplying Monomials by Polynomials

Area Model
What does a polynomial area model look like? What would this model give you?

$$
\begin{aligned}
& \Rightarrow 4 x(2 x-3) \\
& =(4 x \cdot 2 x)+(4 x \cdot-3) \\
& =[(4 \cdot 2)(x \cdot x)]+[(4 \cdot-3)(x)] \\
& =8 x^{2}+-12 x \\
& =8 x^{2}-12 x
\end{aligned}
$$

Chapper $]$ - Mulitipying and Dividing Polynomials

Multiplying Monomials by Polynomials

 Tile ModelHow would you set up $(2 x)(3 x+3)$ with tiles?

Chapper $]$ - Mulitipying and Dividing Polynomials

Multiplying Monomials by Polynomials

Tile Model

How would you set up $(2 x)(3 x+3)$ with tiles?
What would you get as a product?

Chapter $]$ - Multiplying and Dividing Polynomials

Multiplying Monomials by Polynomials

Tile Model

How would you set up $(2 x)(3 x+3)$ with tiles?
What would you get as a product?

$$
\begin{aligned}
& \Rightarrow(2 x)(3 x+3) \\
& =(2 x \cdot 3 x)+(2 x \cdot 3) \\
& =[(2 \cdot 3)(x \cdot x)]+[(2 \cdot 3)(x)] \\
& =6 x^{2}+6 x
\end{aligned}
$$

Chapter $]$ - Mulitipying and Dividing Poynomials
Multiplying Monomials by Polynomials Distributive Low
What is the Distributive Law?

Chaprer $]$ - Mulitipying and Dividing Polynomials

Multiplying Monomials by Polynomials Distributive Low

What is the Distributive Law?

The Distributive Law says that multiplying a number by a group of numbers added together is the same as doing each multiplication separately.

Ex.

$$
3(4+5) \Rightarrow(3 \cdot 4)+(3 \cdot 5)
$$

Chaprer $]$ - Mulitipying and Dividing Poynomials Multiplying Monomials by Polynomials Algebraically

What is $5 x(4 x-6) ?$

Chapter $]$ - Multiplying and Dividing Polynomials Multiplying Monomials by Polynomials

Algebraically
What is $5 x(4 x-6)$?

$$
\begin{aligned}
& =(5 x \cdot 4 x)+(5 x \cdot-6) \\
& =[(5 \cdot 4)(x \cdot x)]+[(5 \cdot-6)(x)] \\
& =20 x^{2}+-30 x \\
& =20 x^{2}-30 x
\end{aligned}
$$

Chaprer $]$ - Mulitipying and Dividing Polynomials

 Multiplying Monomials by Polynomials AlgebraicallyPractice

Chapter] - Multipying and Dividing Polynomials Dividing Monomials - Tile Model

How would you set up $\left(12 x^{2}-4 x\right) \div(2 x)$ with tiles?

Chapter] - Multipying and Dividing Polynomials Dividing Monomials - Tile Model

How would you set up $\left(12 x^{2}-4 x\right) \div(2 x)$ with tiles?

Chapter] - Multipying and Dividing Polynomials Dividing Monomials - Tile Model

How would you set up $\left(12 x^{2}-4 x\right) \div(2 x)$ with tiles? What is the missing factor in the model below?

Chapter] - Multiplying and Dividing Polynomials Dividing Monomials - Tile Model

How would you set up $\left(12 x^{2}-4 x\right) \div(2 x)$ with tiles? What is the missing factor in the model below?

$$
\begin{array}{||l|l|l|l|l|ll}
\hline & & & & & \left(12 x^{2}-4 x\right) \div(2 x) \\
& & & & & & \\
& =\left(12 x^{2} \div 2 x\right)+(-4 x \div 2 x) \\
& & & & & & \\
& & & & & & \\
& & & & & \\
& & & & & \\
& & & & \\
& & & & \\
& & & \left.\left(x^{2} \div x\right)\right]+[(-4 \div 2)(x \div x)
\end{array}
$$

CHAPTER] - MULTTPLYiNg and Dividing Polynomials Dividing Monomials - Algebraically
 What is $\left(49 x^{2}-14 x\right) \div(7 x)$?

Chapter] - Multiplying and Dividing Polynomials
 Dividing Monomials - Algebraically

What is $\left(49 x^{2}-14 x\right) \div(7 x)$?
$=\left(49 x^{2}-14 x\right) \div(7 x)$
$=\left[(49 \div 7)\left(x^{2} \div x\right)\right]+[(-14 \div 7)(x \div x)]$
$=7 x+-2$
$=7 x-2$

CHAPTER] - Multiplying and Dividing Polynomials Dividing Monomials - Algebraically

Practice

Linear
 Relations

Chapter 6 Review

Chapter 6 - Linear Relations Table of Values

How do you set up a Table of Values?

Chapter 6 - LINEAR ReLATIONs Table of Values

How do you set up a Table of Values?

Figure Number (f)	Number of Blocks (b)
1	1
2	4
3	7
4	10

Chapter 6 - Linear Relations Table of Values

How do you set up a Table of Values? How do you create an equation from a Table of Values?

Figure Number (f)	Number of Blocks (b)
1	1
2	4
3	7
4	10

Chapter 6 - LINEAR ReLATIONs Table of Values

How do you set up a Table of Values? How do you create an equation from a Table of Values?

1. Look at the gaps (how much do the blocks increase each time).

Figure Number (f)	Number of Blocks (b)
1	1
2	4
3	7
4	10

2. This is the coefficient of the variable. Also called the slope.
3. See how you need to alter the product to receive the desired value.

Gap $=3$
$3 \cdot$ figure number -2
$=3 x-2$

Chapter 6 - LINEAR ReLATIONs
 Table of Values

Creating a Table of Values from an Equation

Chapter 6 - LINEAR ReLATIONs
 Table of Values

Creating a Table of Values from an Equation

$$
=5 x+4
$$

x	y

Chapter 6 - Linear Relations
 Table of Values

Creating a Table of Values from an Equation

$=5 x+4$

x	y

Substitute the values for x into the equation and solve for y.

Chapter 6 - Linear Relations
 Table of Values

Creating a Table of Values from an Equation

$$
=5 x+4
$$

x	y
0	4
1	9
2	14
3	19

Substitute the values for x into the equation and solve for y.

$$
\begin{aligned}
& x=0 \Rightarrow 5(0)+4 \Rightarrow 4 \\
& x=1 \Rightarrow 5(1)+4 \Rightarrow 9 \\
& x=2 \Rightarrow 5(2)+4 \Rightarrow 14 \\
& x=3 \Rightarrow 5(3)+4 \Rightarrow 19
\end{aligned}
$$

Chapter 6 - Linear Pelations
 Graphing Linear Relations

What do you label the axis?

Chapter 6 - Linear Pelations
 Graphing Linear Relations

What do you label the axis?

Chaprer - Linear Relations

Graphing Linear Relations

Graphing from a Table of Values

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from an Equation

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from an Equation What does this equation mean?

$$
b=3 f-1
$$

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Chaprer 6 - Linear Relations
 Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Chapter 6 - Linear Relations
 Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Chapter 6 - LINEAR RELATIONS
 Graphing Linear Relations

Creating a Table of Values from a Graph

Chapter 6 - Linear Relations
 Graphing Linear Relations

Creating a Table of Values from a Graph

Chaprer 6 - Linear Relations

Graphing Linear Relations

Creating a Table of Values from a Graph

x	y
-2	-5
-1	-3
0	-1
1	1
2	3
3	5

Chapter 6 - Linear Relations
 Graphing Linear Relations

Creating a Table of Values from a Graph

x	y
-2	-5
-1	-3
0	-1
1	1
2	3
3	5

Chapter 6 - Linear Relations
 Graphing Linear Relations

Creating a Table of Values from a Graph

x	y
-2	-5
-1	-3
0	-1
1	1
2	3
3	5

Chapter 6 - Linear Relations
 Graphing Linear Relations

Horizontal Graphs

Chapter 6 - LINEAR RELATIONS
 Graphing Linear Relations

Horizontal Graphs

Chapter 6 - Linear Relations
 Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

Chaprer 6 - Linear Relations
 Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

In horizontal graphs, the y value does not change.
$x=1, y=2$
$x=2, y=2$
$x=3, y=2$

Chaprer 6 - Linear Relations
 Graphing Linear Relations

Vertical Graphs

Chapter 6 - LINEAR RELATIONS
 Graphing Linear Relations

Vertical Graphs

Chapter 6 - Linear Relations
 Graphing Linear Relations

Vertical Graphs
What value would be constant? (not change)

Chapter 6 - Linear Relations
 Graphing Linear Relations

Vertical Graphs
What value would be constant? (not change)

CHAPTER 6 - LINEAR RELATIONS
 Interpreting Graphs - Interpolation

What does it mean to Interpolate?

Chapter 6 - Linear ReLations Interpreting Graphs - Interpolation

What does it mean to Interpolate?
Interpolate means to estimate a value in between given points on a graph.
** Inter \Rightarrow in=between

Chapter 6 - Linear Relations

Interpreting Graphs - Interpolation
Air Density vs. Temperature

Chapter 6 - Linear Relations

Interpreting Graphs - Interpolation
Practice

CHAPTER 6 - LINEAR RELATIONS
 Interpreting Graphs - Extrapolation

What does it mean to Extrapolate?

CHAPTER 6 - LINEAR RELATIONS
 Interpreting Graphs - Extrapolation

What does it mean to Extrapolate?
Extrapolate means to estimate a value in outside of the given points on a graph.
** Extra \Rightarrow extra information

Chapter 6 - Linear Relations
Interpreting Graphs - Extrapolate

CHAPTER 6 - LINEAR RELATIONS
 Interpreting Graphs - Extrapolation

$$
\begin{aligned}
& \text { Linear } \\
& \text { Equations }
\end{aligned}
$$

Chapter 8 Review

CHAPTER 8 - LINEAR EQUATIONS
 Inverse Functions

Inverse functions reverse one another. They complete the opposite operation.

Subtraction \rightarrow

Addition \rightarrow

Multiplication \rightarrow
Division \rightarrow

Squaring \rightarrow
Square Root \rightarrow

CHAPTER 8 - LINEAR EQUATIONS
 Inverse Functions

Inverse functions reverse one another. They complete the opposite operation.

Subtraction \rightarrow Addition

Addition \rightarrow Subtraction
Multiplication \rightarrow Division
Division \rightarrow Multiplication
Squaring \rightarrow Square Root
Square Root \rightarrow Square

How to Solve Equations

To solve equations, you want to isolate for the variable by inverseing all of the operations that were done to it in reverse order.
ie. $5 x-4=31$
What does this equation mean?
How do you solve it?

How to Solve Equations

To solve equations, you want to isolate for the variable by inverseing all of the operations that were done to it in reverse order.
ie. $5 x-4=31$

Means: You are multiplying a value by 5, then subtracting 4 to get 31.

Do the inverse of each operation in reverse order.
To Solve: Start at 31, Add 4, then divide by 5 to get the original value of x.

Steps to Solve

What are the steps to solve equations?

Steps to Solve

What are the steps to solve equations?

1. Simplify

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not attached to the variable

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not with a variable

3. Multiply/Divide Coefficient

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not with a variable

3. Multiply/Divide Coefficient

- The number with the variable

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not with a variable

3. Multiply/Divide Coefficient

- The number with the variable

4. Check by plugging you answer back in for the variable and solving

Practice Equations

$3 x+5 x+4-x+7=88$

Practice Equations

$$
5 x-6=3 x-8
$$

Practice Equations

$$
\frac{3}{4} x+\frac{5}{6}=5 x-\frac{125}{3}
$$

Practice Equations

$$
2(3 x-7)+4(3 x+2)=6(5 x+9)+3
$$

$$
\begin{aligned}
& \text { Linear } \\
& \text { Inequalities }
\end{aligned}
$$

Chapter 9 Review

Chapter 2 - RATiONAL Numbers

Greater Than \& Less Than

What one's which?

Chapter 2 - RATiONAL Numbers

Greater Than \& Less Than

What one's which?

Less Than

Greater Than

Less Than or Equal To

Greater Than or Equal To

Graphing Linear Inequalities

How do you graph for $x>-3$?

Graphing Linear Inequalities

How do you graph for $x>-3$?

Why is the circle on the -3 left open?

Graphing Linear Inequalities

How do you graph for $x>-3$?

Why is the circle on the -3 left open?

- An open circle indicates that the value is NOT included in the solution.
- You use an open circle with the inequality does not include "equal to".

Graphing Linear Inequalities

How do you graph for $x>-3$?

Why is the circle on the -3 left open?

- An open circle indicates that the value is NOT included in the solution.
- You use an open circle with the inequality does not include "equal to".

How do you graph for $x \leq 2$?

Graphing Linear Inequalities

How do you graph for $x>-3$?

Why is the circle on the -3 left open?

- An open circle indicates that the value is NOT included in the solution.
- You use an open circle with the inequality does not include "equal to".

How do you graph for $x \leq 2$?

Graphing Linear Inequalities

How do you graph for $x>-3$?

Why is the circle on the -3 left open?

- An open circle indicates that the value is NOT included in the solution.
- You use an open circle with the inequality does not include "equal to".

How do you graph for $x \leq 2$?

Why is the circle on the 2 coloured in?

Graphing Linear Inequalities

How do you graph for $\mathrm{x}>-3$?

Why is the circle on the -3 left open?

- An open circle indicates that the value is NOT included in the solution.
- You use an open circle with the inequality does not include "equal to".

How do you graph for $x \leq 2$?

Why is the circle on the 2 coloured in?

- An closed circle indicates that the value IS included in the solution.
- You use a closed circle with the inequality does include "equal to".

Linear Inequalities

Solving Linear Inequalities:
Solving Linear Inequalities is identical to the process of solving linear equations. The only difference is you have an inequality sign rather than an equal sign.
** If you multiply or divide by a negative value, the inequality flips directions.

Practice

$-2(x+2)>4-x$

Practice

$-2(x+3)<10$

$-12-1$	-8	-6	-4	-2	0	2	4	6	8	10	12

Practice
$-3 x+3 \leq 12$

Practice

$1 / 4 x-4>-7$

$-12-1$	-8	-6	-4	-2	0	2	4	6	8	10	12

Circle Geometry

Chapter 10 Review

Parts of the Circle

Parts of the Circle - Define the Following Terms

Radius - \qquad

Diameter - \qquad

Chord - \qquad

Arc of Circle -
Endpoints -

Parts of the Circle - Define the Following Terms
Radius - A line going from the center of the circle to the circumference.

Diameter - \qquad

Chord - \qquad

Arc of Circle - \qquad
Endpoints -

Parts of the Circle - Define the Following Terms
Radius - A line going from the center of the circle to the circumference.

Diameter - A line going from one side of the circle to the other, passing through the center.

Chord - \qquad

Arc of Circle - \qquad
Endpoints - \qquad

Parts of the Circle - Define the Following Terms
Radius - A line going from the center of the circle to the circumference.

Diameter - A line going from one side of the circle to the other, passing through the center.

Chord - A line going from one side of the circle to the other, without passing through the center.

Arc of Circle - \qquad
Endpoints - \qquad

Parts of the Circle - Define the Following Terms
Radius - A line going from the center of the circle to the circumference.

Diameter - A line going from one side of the circle to the other, passing through the center.

Chord - A line going from one side of the circle to the other, without passing through the center.

Arc of Circle - A portion of the circumference of the circle.
Endpoints - \qquad

Parts of the Circle - Define the Following Terms
Radius - A line going from the center of the circle to the circumference.

Diameter - A line going from one side of the circle to the other, passing through the center.

Chord - A line going from one side of the circle to the other, without passing through the center.

Arc of Circle - A portion of the circumference of the circle.
Endpoints - The starting and ending points of an angle.

Parts of the Circle - Define the Following Terms

Inscribed Angle - \qquad

Central Angle - \qquad

Bisector - \qquad

Tangent -

Perpendicular -

Parts of the Circle - Define the Following Terms

Inscribed Angle - An angle where all three points are touching the circumference of the circle.

Central Angle - \qquad

Bisector -

\qquad

Tangent -

Perpendicular -

Parts of the Circle - Define the Following Terms

Inscribed Angle - An angle where all three points are touching the circumference of the circle.

Central Angle - An angle where two points are touching the circumference of the circle and the 3rd is in the center.

Bisector -

\qquad

[^0]\qquad

Perpendicular -

Parts of the Circle - Define the Following Terms
Inscribed Angle - An angle where all three points are touching the circumference of the circle

Central Angle - An angle where two points are touching the circumference of the circle and the 3rd is in the center

Bisector - A radius that evenly splits a chord and meets at a 90° angle.

> Tangent -
\qquad

Perpendicular -

Parts of the Circle - Define the Following Terms
Inscribed Angle - An angle where all three points are touching the circumference of the circle

Central Angle - An angle where two points are touching the circumference of the circle and the 3rd is in the center

Bisector - A radius that evenly splits a chord and meets at a 90° angle.

Tangent - A line that touches the outside of the circle in one spot and is perpendicular to the radius.

Perpendicular -

Parts of the Circle - Define the Following Terms
Inscribed Angle - An angle where all three points are touching the circumference of the circle

Central Angle - An angle where two points are touching the circumference of the circle and the 3rd is in the center

Bisector - A radius that evenly splits a chord and meets at a 90° angle.

Tangent - A line that touches the outside of the circle in one spot and is perpendicular to the radius.

Perpendicular - Meets at a 90° angle.

How to write angles

How to write angles

What can writing down the angle help us with?

How to write angles

What can writing down the angle help us with?

- By writing down the angle, you could more clearly see common end points, therefore helping you determine the angle measurements.

Relationships Between Angles

Two Inscribed Angles

Relationships Between Angles

Two Inscribed Angles that have the same end points Also share the same measurement. $<\underline{A} B \underline{C}$ and $<\underline{A D C}$ both have the endpoints \underline{A} and \underline{C}, so B and D are equal.

Relationships Between Angles

Two Inscribed Angles that have the same end points Also share the same measurement. $<\underline{A} B \underline{C}$ and $<\underline{A D C}$ both have the endpoints \underline{A} and \underline{C}, so B and D are equal.

A Central and Inscribed Angle: \qquad
\qquad

Relationships Between Angles

Two Inscribed Angles that have the same end points Also share the same measurement. $<\underline{A} B \underline{C}$ and $<\underline{A} D \underline{C}$ both have the endpoints $\underset{A}{ }$ and \underline{C}, so B and D are equal.

A Central and Inscribed Angle that have the same end points are proportional by a factor of 2. The Central angle is always double the inscribed.
$<\underline{Q} A \underline{P}$ and $<\underline{Q} O \underline{P}$ both have the same end points (Q P), so O is double the value of A

Pythagorean Theorem

Use pythagoras to find the length of a line within a circle.

$$
\begin{array}{ll}
a^{2}+b^{2}=c^{2} & \rightarrow c \text { is always the hypotenuse, the longest side, across from } \\
\text { the right angle. }
\end{array} \quad \begin{gathered}
\rightarrow \begin{array}{c}
\text { If you have the longest side, subtract the square of the } \\
c^{2}-b^{2}=a^{2} \\
\text { Shorter side you have. }
\end{array}
\end{gathered}
$$

Bisectors

What is a bisector?

Bisectors

What is a bisector?

A bisector is a radius that splits a chord into 2 even parts.

Bisectors

What is a bisector?

A bisector is a radius that splits a chord into 2 even parts.

A bisector always:

Bisectors

What is a bisector?

A bisector is a radius that splits a chord into 2 even parts.

A bisector always:

- Splits a chord into two equal parts
- Meets at a 90° angle

- Goes through the center of a circle (a radius)

Bisectors

What is a bisector?

A bisector is a radius that splits a chord into 2 even parts.

A bisector always:

- Splits a chord into two equal parts
- Meets at a 90° angle

- Goes through the center of a circle (a radius)
** If you have a chord within a circle, bisect it and create a triangle with the radius. You can then do Pythagoras to find the missing length.

Tangents

What are tangents?

Tangents

What are tangents?
Tangents are straight lines on the outside of the circle
 that touch the circumference at only one point, meeting at a 90° angle.

Tangents

What are tangents?
Tangents are straight lines on the outside of the circle
 that touch the circumference at only one point, meeting at a 90° angle.

What do Tangents always do?

Tangents

What are tangents?
Tangents are straight lines on the outside of the circle
 that touch the circumference at only one point, meeting at a 90° angle.

What do Tangents always do?

- Touch only one point of the circle (at the point of tangency)
- Are perpendicular to the radius of the circle (meets at a 90° angle)

Tangents

What are tangents?
Tangents are straight lines on the outside of the circle
 that touch the circumference at only one point, meeting at a 90° angle.

What do Tangents always do?

- Touch only one point of the circle (at the point of tangency)
- Are perpendicular to the radius of the circle (meets at a 90° angle)
** If you have a tangent on the outside of a circle, draw a radius to the point of tangency and complete the triangle with a third line. Then use Pythagoras to solve for the length of the missing side..

Data Analysis

Chapter 11 Review

Influencing Factors

Influencing factors affect how data is collected or how responses are obtained.
They may unknowingly make people biased to specific responses.

Types of Influencing Factors
Bias -
Timing -
Use of Language -

Ethics -

Cost -
Privacy -

Types of Influencing Factors
Bias - Does the question show a preference for a specific product?
Timing -
Use of Language -

Ethics -

Cost -
Privacy -

Types of Influencing Factors

Bias - Does the question show a preference for a specific product?
Timing - Does the time the survey is given influence results?
Use of Language -

Ethics -

Cost -
Privacy -

Types of Influencing Factors

Bias - Does the question show a preference for a specific product?
Timing - Does the time the survey is given influence results?
Use of Language - Does the language use influence people? Does the question make sense?

Ethics -

Cost -
Privacy -

Types of Influencing Factors

Bias - Does the question show a preference for a specific product?
Timing - Does the time the survey is given influence results?
Use of Language - Does the language use influence people? Does the question make sense?

Ethics - Does the question refer to inappropriate/illegal behaviour?

Cost -
Privacy -

Types of Influencing Factors

Bias - Does the question show a preference for a specific product?
Timing - Does the time the survey is given influence results?
Use of Language - Does the language use influence people? Does the question make sense?

Ethics - Does the question refer to inappropriate/illegal behaviour?

Cost - The the cost of the study outweigh the benefits?
Privacy -

Types of Influencing Factors

Bias - Does the question show a preference for a specific product?
Timing - Does the time the survey is given influence results?
Use of Language - Does the language use influence people? Does the question make sense?

Ethics - Does the question refer to inappropriate/illegal behaviour?

Cost - The the cost of the study outweigh the benefits?
Privacy - Do people have a right to refuse? Can they respond anonymously?

Population vs. Sample

Population vs. Sample

Population is everyone who is being surveyed.

Population vs. Sample

Population is everyone who is being surveyed.

A Sample is a portion of the population.

Forms of Data Collection

Systematic:

Stratified:

Convenience:

Random:

Voluntary:

Forms of Data Collection

Systematic: Using a list and choosing people at equal intervals.

Stratified:

Convenience:

Random:

Voluntary:

Forms of Data Collection

Systematic: Using a list and choosing people at equal intervals.

Stratified: Splitting the population into groups and choose equal percentages from each group.

Convenience:

Random:

Voluntary:

Forms of Data Collection

Systematic: Using a list and choosing people at equal intervals.

Stratified: Splitting the population into groups and choose equal percentages from each group.

Convenience: Choosing people to survey who are easy to access.

Random:

Voluntary:

Forms of Data Collection

Systematic: Using a list and choosing people at equal intervals.

Stratified: Splitting the population into groups and choose equal percentages from each group.

Convenience: Choosing people to survey who are easy to access.

Random: Choosing people at random from the population, where each member has an equal chance of being chosen.

Voluntary:

Forms of Data Collection

Systematic: Using a list and choosing people at equal intervals.

Stratified: Splitting the population into groups and choose equal percentages from each group.

Convenience: Choosing people to survey who are easy to access.

Random: Choosing people at random from the population, where each member has an equal chance of being chosen.

Voluntary: Inviting everyone to participate and allowing people to volunteer their responses.

Review Activities

Your Turn!

Chapter 1

Your Turn!

Practice

1. Using the Pattern Blocks provided, create a design which has...

- Line Symmetry
- Rotational Symmetry
* Be sure you are able to describe the symmetry present in your design.

2. Using the Lego blocks, create a 3D object and determine the surface area of your object.
** You may use the provided markers to describe your designs or calculate your object's surface area on your desk.

Chapter 2

$$
\begin{aligned}
& \text { Rational } \\
& \text { Numbers }
\end{aligned}
$$

Your Turn!

Practice

Integer/Fraction Operations:
Materials: Dominos (fractions), Three different coloured dice
Choose two dominos and roll your three dice

- Die $1 \rightarrow$ Domino Fraction 1 (Even = Positive, Odd = Negative)
- Die $2 \rightarrow$ Domino Fraction 2 (Even = Positive, Odd = Negative)
- Die $3 \rightarrow$ Operation ($1=$ Add, $2=$ Subtract, $3=$ Multiply, $4=$ Divide, $5 / 6=$ Your choice)

Use the dice rolls to determine what you will do with the dominos that you choose.
** You may use the provided markers to do the calculations on your desk.

Chapter 3

Your Turn!

Practice

Play Laws of Exponent Rolling Review

1. Partner A rolls two dice. Find the two squares on the board which correspond to the numbers on the dice. For example, a $(3,1)$ would correspond to the following problems:

- Column 3, Row 1 for Partner A
- Column 1, Row 3 for Partner B
 together to identify any mistakes.

3. Partner B rolls following the same instructions as above.
4. $\quad \mathrm{Cl} \square$ Work together to fill the entire board.
** You may use the provided markers to do your work on your desks.

Scale Images

Your Turn!

Practice

1. Using the Lego provided, create any object.
2. Roll a die and use the value of the roll as your scale factor.
3. Create a second object that is a scale factor of your original.

Chapter 5

$$
\begin{aligned}
& \text { Adding \& } \\
& \text { Subtracting } \\
& \text { Polynomials } \\
& \text { your turn! }
\end{aligned}
$$

Practice

Adding and Subtracting Polynomials Practice Sheets

(Ask Ms. Rae if you wanted to practice with these)

Chapter 5

$$
\begin{aligned}
& \text { Dividing } \\
& \text { Polynomials }
\end{aligned}
$$

Your Turn!

Practice...see Ms. Ree for escope room problems.

$$
\begin{aligned}
& \text { Linear } \\
& \text { Relations }
\end{aligned}
$$

Your Turn!

Practice....see Ms. Roe for Mini Mystery problems

Linear Equations

The Ghostly Guest

$$
\begin{aligned}
& \text { Linear } \\
& \text { Equations }
\end{aligned}
$$

Your Turn!

Practice...see Ms. Roe for Mini Mystery problems

$$
\begin{aligned}
& \text { Linear } \\
& \text { Inequalities }
\end{aligned}
$$

Your Turn!

Practice..see Ms. Ree if you wonted to proctice with these

Inequality

$$
2 x+7<-1 \Rightarrow x<-4
$$

Numberline

Circle

Geometry

Your Turn!

Practice..see Ms. Roe if you wonted to proctice with these

[^0]: Tangent -

