Practice

1. Find the measure of $\angle C$ to the nearest degree.

Use $\triangle ABD$ to find the length of BD.

Use the tangent ratio.

In \triangle BCD, use the _____ ratio to find \angle C.

The measure of ∠C is about _____.

2. Two guy wires support a flagpole, FH. The first wire is 11.2 m long and has an angle of inclination of 39°. The second wire has an angle of inclination of 47°. How tall is the flagpole to the nearest tenth of a metre?

Recall that the angle the wire makes with the ground is called the angle of inclination.

We want to find the length of FH. Use \triangle EGH to find the length of EH. Use the cosine ratio.

In \triangle EFH, use the _____ ratio to find the length of FH.

3. A mountain climber is on top of a mountain that is 680 m high. The angles of depression of two points on opposite sides of the mountain are 48° and 32°. How long would a tunnel be that runs between the two points? Give your answer to the nearest metre.

We want to find the length of QN.

The angle of depression of point Q is . . . So, \angle M in \triangle PQM is: 90° - _____, or ____.

Use $\triangle PQM$ to find the length of PQ. Use the _____ ratio.

PQ =

The angle of depression of point N is . . So, $\angle M$ in $\triangle PMN$ is: $90^{\circ} - \underline{\hspace{1cm}}$, or $\underline{\hspace{1cm}}$.

Use $\triangle PMN$ to find the length of PN.

Use the _____ ratio.

The length of the tunnel is: _____ = ____ + ____

The tunnel would be about ______long.