Example 1 Determine Imperial Distances

The photograph shows a polar bear near Churchill, MB. The scale of the photograph is 1:24.

- a) Calculate the height of the bear's back, to the nearest inch.
- b) What is the length of the bear? State your answer in feet and whole inches.

Example 2 Apply Linear Measurement

The Carsons want to buy a 32" television. The size of a television is measured across the screen diagonally. They are choosing between a standard 4:3 television set and a widescreen 16:9 HDTV. To help them decide, calculate the screen dimensions and the viewing area for each television. Which television has the greater viewing area?

Example 3 Solve a Problem Using Imperial Measurements

Alashun wants to make a drum, or gilaut, that resembles the one used by a drum dancer in Iqaluit, NU. He has a circular frame, over which to stretch caribou skin. Then, he will lash it into place along the frame with sinew. Alashun uses 3 ½ in. of sinew for each inch of the frame.

- a) Estimate the diameter of the drum frame in imperial units. The scale of the photo is 1 : 15.
- b) Approximately what length of sinew does Alashun need to make the drum? State your answer in yards and inches.

	1.2 Imperial Measurement						
1	a) diagram height	= 2 inches. Cross Multiply 24-2 = 48 = 48 48 inches					
	b) length = 33/8 4	$\frac{3.27 \times 24}{8} = 81 \text{ inches} = 6'9''$					
		32* diagonal $16:9 \rightarrow 1.77:1$ $a^{2} + b^{2} = c^{2} \times \frac{32}{1.772}$ $(1.773)^{2} + x^{2} = 32^{2}$					
	$\frac{2.7 \times^{2} + 1 \times^{2} = 1024}{2.7 \times^{2} + 2.7 \times^{2} = 1024}$	$3.\frac{5}{2}x^{2} + 1x^{2} = 1024$ $4.\frac{5}{2}x^{2} = 1024$ $4.\frac{5}{4.2}x^{2} = 1024$					
	$5x^2 = \sqrt{368.64}$ x = 19.2	$f_{X}^{2} = f_{2}46.1$ x = 15.7 in					
	l=19.2 in. h= 25.6 A= lh -> 19.2 x 25 =491.52 in ³	$L=15.7 \qquad h=27.89$ $A = lw + (15.7)(27.89)$ $= 437.55 \text{ in}^{2}$					
		4:3 to has the larger area. 47.12 in x 3.5 in					
	C=115.	= 165 inches. ÷ 36 4 yas al inches					