Grade 8 Math

Course Review

Chopter 1 - Representino Dato

Chopter 2 - Rates, Ratios and Proportional Reasoning
Chopter 3 - Pythooorean Relotionshio
Chapter 4 - Understandino Percents

Chopter 5 - Surface Areo

Chapter 7 - Volume

Chapter 6 - Fraction Operation

Chapter 8 - Integers

Chopter 9 - Linear Relations

Chapter 10 - Solving Linear Equations
Chopter 11 - Probability
Chapter 12 - Tessellations

Chapter 1

Representing Data

Types of Graphs and Their Use

Types of Graphs and Their Use

Bar Graphs - What is the best use?

Types of Graphs and Their Use

Bar Graphs - What is the best use?

Bar graphs are best for comparing data across categories.

Types of Graphs and Their Use

Double Bar Graphs - What is the best use?

Types of Graphs and Their Use

Double Bar Graphs - What is the best use?

Double Bar Graphs are best for comparing two sets of data across categories.

Types of Graphs and Their Use

Circle Graphs/Pie Charts - What is the best use?

Types of Graphs and Their Use

Circle Graphs/Pie Charts - What is the best use?

Circle Graphs are best for comparing categories to the whole using percents.

The sum of the percents in a circle graph is always 100%.

Types of Graphs and Their Use

Line Graphs - What is the best use?

Types of Graphs and Their Use

Line Graphs - What is the best use?

Line graphs are best for showing changes in data over time.

Types of Graphs and Their Use

Pictographs - What is the best use?

Types of Graphs and Their Use

Pictographs - What is the best use?

Pictographs are best for comparing data that can be easily counted and represented using symbols.

Misrepresenting Data - Ways to Skew Data

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

The scale is distorted making it appear that they are further apart in Graph B or more similar in Graph A

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?
Move over Bonzo, The Big Cheese is in town!

The Big Cheese 56\%

Bonzo Burger 44\%

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?
Move over Bonzo, The Big Cheese is in town!

The size of the images are distorted making it appear that The Big Cheese is more popular by a greater margin .

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

The size of the bars is distorted making it appear that Scott has progressed a lot further than Bryce in the quest.

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

Misrepresenting Data - Ways to Skew Data

What is distorted about the graph below?

The size of the images are distorted making it appear that Apples had the most sales in the week when in reality they were the smallest sale.

Chapter 2

Rates, Ratios and Proportional Reasoning

Ratios

Ratios

What are ratios?

Ratios

What are ratios?
Ratios are a comparison of like items such as male students to female students in a clossroom.

Ratios

What are ratios?
Ratios are a comparison of like items such as male students to female students in a classroom.

Ratios can be expressed as a fraction or separated by a colon ": "
$2 / 3$ or $2: 3$

Types of Ratios

Part to Part:

Types of Ratios

Part to Part:
Compares two or more parts of a set.

Types of Ratios

Part to Part:
Compares two or more parts of a set.

Example: the ratio of apples to bananas is

Types of Ratios

Part to Part:
Compares two or more parts of a set.

Example: the ratio of apples to bananas is 10:6

Types of Ratios

Part to Whole:

Types of Ratios

Part to Whole:
Compares a part of the set to the total amount.

Types of Ratios

Part to Whole:
Compares a part of the set to the total amount.

Example: the ratio of bananas to the total is

Types of Ratios

Part to Whole:
Compares a part of the set to the total amount.

Example:

the ratio of bananas to the total is 6:16 or $6 / 16$

Rates

Rates

What are rates?

Rates

What are rates?
Ratios are a comparison of two values with different units such as the distance you can travel in a set time ($500 \mathrm{~km} / 5 \mathrm{~h}$)

Unit Rates

Unit Rates

What are unit rates?

Unit Rates

What are unit rates?
Unit rates are a simplified version of a rate where the second value/unit is 1.

Unit Rates

What are unit rates?
Unit rates are a simplified version of a rate where the second value/unit is 1, for example, $100 \mathrm{~km} / \mathrm{h}$.

Unit Rates

What are unit rates?
Unit rates are a simplified version of a rate where the second value/unit is 1, for example, $100 \mathrm{~km} / \mathrm{h}$.

In this example, you travel 100 km for every 1 hour driven.

Unit Rates

What are unit rates?
Unit rates are a simplified version of a rate where the second value/unit is 1, for example, $100 \mathrm{~km} / \mathrm{h}$.

In this example, you travel 100 km for every 1 hour driven.
You calculate rates through division. The desired units show how to divide.

Unit Rates

What are unit rates?
Unit rates are a simplified version of a rate where the second value/unit is 1, for example, $100 \mathrm{~km} / \mathrm{h}$.

In this example, you travel 100 km for every 1 hour driven.
You calculate rates through division. The desired units show how to divide.
"km/h" means \rightarrow km divided by the number of hours

Ratios vs. Rates

Ratios	Rates
Is a statement	Is a calculation
Compares to similar items	Compares different items
Has two values with the same type of unit	Has one value with the different units
Ex. 3 cats : 4 pets $3: 4$ Two values, both animals	Ex. $375 \mathrm{~km} /$ day

Proportional Reasoning

Proportional Reasoning

What is a proportion?

Proportional Reasoning

What is a proportion?
A proportion is a set of equivalent fractions.

Proportional Reasoning

What is a proportion?
A proportion is a set of equivalent fractions.
You create equivalent fractions through either multiplication or division.

Proportional Reasoning

What is a proportion?
A proportion is a set of equivalent fractions.
You create equivalent fractions through either multiplication or division.

- if the value is getting larger, you need to multiply

Proportional Reasoning

What is a proportion?
A proportion is a set of equivalent fractions.
You create equivalent fractions through either multiplication or division.

- if the value is getting larger, you need to multiply
- if the value is getting smaller, you need to divide

Proportional Reasoning

What is a proportion?
A proportion is a set of equivalent fractions.
You create equivalent fractions through either multiplication or division.

- if the value is getting larger, you need to multiply
- if the value is getting smaller, you need to divide
- Whatever you do to the numerator of the fraction, you do to the denominator

Chapter 3

Pythagorean Relationship

Squares

Squares

What does it mean to "square a number"?

Squares

What does it mean to "square a number"?

To find the area of the square.

Squares

What do you do to "square a number"?

Squares

What do you do to "square a number"?

You multiply the number by itself.

Squares

What do you do to "square a number"?

You multiply the number by itself.

Ex.

Squares

What do you do to "square a number"?

You multiply the number by itself.

Ex.

Squares

What do you do to "square a number"?

You multiply the number by itself.

Ex.

Means $5 \times 5 \Rightarrow$

Squares

What do you do to "square a number"?

You multiply the number by itself.

Ex.

Means $5 \times 5 \Rightarrow 25$

Square Roots

Square Roots

When you are asked to find the square root, what are you actually determining?

Square Roots

When you are asked to find the square root, what are you actually determining?

The side length of a square.

Square Roots

When you are asked to find the square root, what are you actually determining?

The side length of a square.

Ex.

Square Roots

When you are asked to find the square root, what are you actually determining?

The side length of a square.

Ex.
$\sqrt{ } 49 \Rightarrow$

Square Roots

When you are asked to find the square root, what are you actually determining?

The side length of a square.

Pythagorean Relationship

Pythagorean Relationship

What is the Pythagorean Theorem?

Pythagorean Relationship

What is the Pythagorean Theorem?

$$
a^{2}+b^{2}=c^{2}
$$

Pythagorean Relationship

What is the Pythagorean Theorem?

$$
a^{2}+b^{2}=c^{2}
$$

- where \boldsymbol{a} and \boldsymbol{b} are the sides \qquad
- and c is the \qquad

Pythagorean Relationship

What is the Pythagorean Theorem?

$$
a^{2}+b^{2}=c^{2}
$$

- where \boldsymbol{a} and \boldsymbol{b} are the sides that create the right angle
- and \boldsymbol{c} is the \qquad

Pythagorean Relationship

What is the Pythagorean Theorem?

$$
a^{2}+b^{2}=c^{2}
$$

- where \boldsymbol{a} and \boldsymbol{b} are the sides that create the right angle
- and \boldsymbol{c} is the hypotenuse (the longest side)

Pythagorean Relationship

What does the Pythagorean expression mean?

Pythagorean Relationship

What does the Pythagorean expression mean?

The area of the squares attached to sides \boldsymbol{a} and \boldsymbol{b} is equal to the area of the square attached to side c.

Using the Pythagorean Relationship

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $6^{2}+8^{2}=c^{2}$

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $6^{2}+8^{2}=c^{2}$

3. Evaluate the squares. $36+64=c^{2}$

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $6^{2}+8^{2}=c^{2}$

3. Evaluate the squares. $36+64=c^{2}$
4. Add the squares. $100=c^{2}$

Using the Pythagorean Relationship - Finding the Hypotenuse

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $6^{2}+8^{2}=c^{2}$

3. Evaluate the squares. $36+64=c^{2}$
4. Add the squares. $100=c^{2}$
5. Square root the sum to get the side of $c . \sqrt{ } 100=c^{2} \Rightarrow \quad 10=c$

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $a^{2}+8^{2}=9^{2}$

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $a^{2}+8^{2}=9^{2}$
3. Evaluate the squares. $a^{2}+64=81$

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $a^{2}+8^{2}=9^{2}$

3. Evaluate the squares. $a^{2}+64=81$
4. Subtract the leg area from the area of the hypotenuse. $a^{2}=81-64 \Rightarrow a^{2}=17$

Using the Pythagorean Relationship - Finding the Leg

What are the steps to using the Pythagorean Relationship to find missing sides?

1. Write down the formula. $a^{2}+b^{2}=c^{2}$
2. Substitute the known values. $a^{2}+8^{2}=9^{2}$

3. Evaluate the squares. $a+64=81$
4. Subtract the leg area from the area of the hypotenuse. $a^{2}=81-64 \Rightarrow a^{2}=17$
5. Square root the sum to get the side of the leg. $A^{2}=\sqrt{ } 17 \Rightarrow \quad a=4.1$

Chapter 4

Understanding Percent

Decimals, Fractions and Percents

Decimals, Fractions and Percents

Converting from Decimal to Percent

Decimals, Fractions and Percents

Converting from Decimal to Percent

- Multiply the decimal by 100. (move the decimal point two digits right)

Decimals, Fractions and Percents

Converting from Decimal to Percent

- Multiply the decimal by 100. (move the decimal point two digits right)

Ex. 0.426

Decimals, Fractions and Percents

Converting from Decimal to Percent

- Multiply the decimal by 100. (move the decimal point two digits right)

Ex. $0.426 \rightarrow$ move the decimal point two digits right...

Decimals, Fractions and Percents

Converting from Decimal to Percent

- Multiply the decimal by 100. (move the decimal point two digits right)

Ex. $0.426 \rightarrow$ move the decimal point two digits right...
42.6 \%

Decimals, Fractions and Percents

Converting from Percent to Decimal

Decimals, Fractions and Percents

Converting from Percent to Decimal

- Divide the percent by 100. (move the decimal point two digits left)

Decimals, Fractions and Percents

Converting from Percent to Decimal

- Divide the percent by 100. (move the decimal point two digits left)

Ex. 73.4 \%

Decimals, Fractions and Percents

Converting from Percent to Decimal

- Divide the percent by 100. (move the decimal point two digits left)

Ex. 73.4 \% \rightarrow move the decimal point two digits left...

Decimals, Fractions and Percents

Converting from Percent to Decimal

- Divide the percent by 100. (move the decimal point two digits left)

Ex. 73.4 \% \rightarrow move the decimal point two digits left...
0.734

Decimals, Fractions and Percents

Converting from Percent to Fraction

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator
- Make the denominator 100

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator
- Make the denominator 100
- Simplify through division

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator
- Make the denominator 100
- Simplify through division

Ex. 25\%

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator
- Make the denominator 100
- Simplify through division

Ex. 25\%
$\underline{25}$
100

Decimals, Fractions and Percents

Converting from Percent to Fraction

- Place the percent value as the numerator
- Make the denominator 100
- Simplify through division

Ex. 25\%
$\underline{25} \Rightarrow 1$
$100 \quad 4$

Decimals, Fractions and Percents

Converting from Fraction to Percent

Decimals, Fractions and Percents

Converting from Fraction to Percent

- Convert the fraction into a decimal by dividing the numerator by the denominator

Decimals, Fractions and Percents

Converting from Fraction to Percent

- Convert the fraction into a decimal by dividing the numerator by the denominator
- Multiply the decimal by 100 (move the decimal point 2 spots to the right)

Decimals, Fractions and Percents

Converting from Fraction to Percent

- Convert the fraction into a decimal by dividing the numerator by the denominator
- Multiply the decimal by 100 (move the decimal point 2 spots to the right)

Ex. $3 / 4$

Decimals, Fractions and Percents

Converting from Fraction to Percent

- Convert the fraction into a decimal by dividing the numerator by the denominator
- Multiply the decimal by 100 (move the decimal point 2 spots to the right)

Ex. $3 / 4$

$=0.75$

Decimals, Fractions and Percents

Converting from Fraction to Percent

- Convert the fraction into a decimal by dividing the numerator by the denominator
- Multiply the decimal by 100 (move the decimal point 2 spots to the right)

Ex. $3 / 4$

$=0.75$
$=75 \%$

Decimals, Fractions and Percents

Converting from Fraction to Decimal

Decimals, Fractions and Percents

Converting from Fraction to Decimal

- Divide the numerator by the denominator

Decimals, Fractions and Percents

Converting from Fraction to Decimal

- Divide the numerator by the denominator

Ex. ${ }^{8} / 10$

Decimals, Fractions and Percents

Converting from Fraction to Decimal

- Divide the numerator by the denominator

Ex. ${ }^{8} / 10$
$8 \div 10 \Rightarrow$

Decimals, Fractions and Percents

Converting from Fraction to Decimal

- Divide the numerator by the denominator

Ex. ${ }^{8} / 10$
$8 \div 10 \Rightarrow 0.8$

Decimals, Fractions and Percents

Converting from Decimal to Fraction

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. 0.125

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. $0.125 \rightarrow$ ones.tenths hundredths thousandths

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. $0.125 \rightarrow$ ones.tenths hundredths thousandths
\rightarrow the final digit is in the thousandths place value, this becomes the denominator

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. $0.125 \rightarrow$ ones.tenths hundredths thousandths
\rightarrow the final digit is in the thousandths place value, this becomes the denominator

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. $0.125 \rightarrow$ ones.tenths hundredths thousandths
\rightarrow drop the decimal point $\rightarrow 125$, this becomes the numerator
_125
1000

Decimals, Fractions and Percents

Converting from Decimal to Fraction

- Look at the final place value. The name of this place value becomes the denominator.
- Drop the decimal point and place the value as the numerator
- Simplify

Ex. $0.125 \rightarrow$ ones.tenths hundredths thousandths
\rightarrow Simplify
$\frac{125}{1000} \Rightarrow \frac{1}{8}$

Understanding Percents

Understanding Percents

What would the following diagram represent as a percent?

Understanding Percents

What would the following diagram represent as a percent?

100 squares +

Understanding Percents

What would the following diagram represent as a percent?

Understanding Percents

What would the following diagram represent as a percent?

Understanding Percents

What would the following diagram represent as a percent?

Percent of a Number

Percent of a Number

How do you find the percent of a number?

Percent of a Number

How do you find the percent of a number?

- Turn the percent into a decimal by dividing by 100 (move the decimal point 2 places left)

Percent of a Number

How do you find the percent of a number?

- Turn the percent into a decimal by dividing by 100 (move the decimal point 2 places left)
- Multiply the decimal by the value you are finding the percent of.

Chapten 5

Surface Area

What is surface area?

What is surface area?

Surface area measure the total areas of all outside surface. It tell you how much you would need to completely cover the shape, such as if you were going to paint or wrap it as a gift.

What is surface area?

Surface area measure the total areas of all outside surface. It tell you how much you would need to completely cover the shape, such as if you were going to paint or wrap it as a gift.

Surface Area is measured in units².

What is surface area?

Surface area measure the total areas of all outside surface. It tell you how much you would need to completely cover the shape, such as if you were going to paint or wrap it as a gift.

Surface Area is measured in units².

The formula for surface area is $\rightarrow \quad S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$

Area Formulas

Area Formulas

Area Formulas	Shape
$l \times w$	

Area Formulas

Area Formulas	Shape
$l \times w$	
$\frac{b \times h}{2}$	

Area Formulas

Area Formulas	Shape
$l \times w$	
$\frac{b \times h}{2}$	
$\pi \times r^{2}$	

Perimeter Formulas

Perimeter Formulas

Perimeter Formulas

Perimeter Formulas

Finding Surface Area - Rectangular Prism

Finding Surface Area - Rectangular Prism $S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$

Finding Surface Area - Rectangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a rectangle, so use the rectangle area/perimeter formula

Finding Surface Area - Rectangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a rectangle, so use the rectangle area/perimeter formula $S A=(2 \times(l \times w))+((l+w+l+w) \times H)$

Finding Surface Area - Rectangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a rectangle, so use the rectangle area/perimeter formula $S A=(2 \times(l \times w))+((l+w+l+w) \times H)$ $S A=(2 \times 10 \times 3)+((10+3+10+3) \times 4)$

Finding Surface Area - Rectangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a rectangle, so use the rectangle area/perimeter formula $S A=(2 \times(l \times w))+((l+w+l+w) \times H)$
$S A=(2 \times 10 \times 3)+((10+3+10+3) \times 4)$
$S A=(60)+(26 \times 4)$

Finding Surface Area - Rectangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a rectangle, so use the rectangle area/perimeter formula $S A=(2 \times(l \times w))+((l+w+l+w) \times H)$
$S A=(2 \times 10 \times 3)+((10+3+10+3) \times 4)$
$S A=(60)+(26 \times 4)$
$S A=60+104$
$S A=164 \mathrm{in}^{2}$

Finding Surface Area - Triangular Prism

Finding Surface Area - Triangular Prism $S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$

Finding Surface Area - Triangular Prism

$$
S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)
$$

The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

$$
\begin{aligned}
& s_{1}{ }^{2}+s_{2}{ }^{2}=s_{3}{ }^{2} \\
& 12^{2}+9^{2}=s_{3}{ }^{2}
\end{aligned}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

$$
\begin{aligned}
& \mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} \\
& 12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} \\
& 144+81=\mathrm{s}_{3}{ }^{2}
\end{aligned}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

$$
\begin{aligned}
& \mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} \\
& 12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} \\
& 144+81=\mathrm{s}_{3}{ }^{2} \\
& 225=\mathrm{s}_{3}{ }^{2}
\end{aligned}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

$$
\begin{aligned}
& \mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} \quad \quad \sqrt{ } 225=\mathrm{s}_{3}{ }^{2} \\
& 12^{2}+9^{2}=\mathrm{s}_{3}^{2} \\
& 144+81=\mathrm{s}_{3}{ }^{2} \\
& 225=\mathrm{s}_{3}{ }^{2}
\end{aligned}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+\left(9+12+S_{3} \times H\right)$

$$
\begin{array}{lr}
\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} & \sqrt{ } 225=\mathrm{s}_{3}{ }^{2} \\
12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} & 15=\mathrm{s}_{3} \\
144+81=\mathrm{s}_{3}{ }^{2} & \\
225=\mathrm{s}_{3}{ }^{2} &
\end{array}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+(9+12+15 \times 18)$

$$
\begin{array}{lr}
\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} & \sqrt{ } 225=\mathrm{s}_{3}{ }^{2} \\
12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} & 15=\mathrm{s}_{3} \\
144+81=\mathrm{s}_{3}{ }^{2} & \\
225=\mathrm{s}_{3}{ }^{2} &
\end{array}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ $S A=\left(2 \times \frac{12 \times 9}{2}\right)+(9+12+15 \times 18)$ $S A=\left(2 \times \frac{108}{2}\right)+(36 \times 18)$

$$
\begin{array}{lr}
\mathrm{S}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} & \sqrt{ } 225=\mathrm{s}_{3}{ }^{2} \\
12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} & 15=\mathrm{s}_{3} \\
144+81=\mathrm{s}_{3}{ }^{2} & \\
225=\mathrm{s}_{3}{ }^{2} &
\end{array}
$$

Finding Surface Area - Triangular Prism

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a triangle, so use the triangle area/perimeter formula $S A=\left(2 \times \frac{b \times h}{2}\right)+\left(s_{1}+s_{2}+s_{3} \times H\right)$ SA $=\left(2 \times \frac{12 \times 9}{2}\right)+(9+12+15 \times 18)$
$S A=\left(2 \times \frac{108}{2}\right)+(36 \times 18)$
$S A=108+288$
SA $=396 \mathrm{~cm}^{2}$

$$
\begin{array}{lr}
\mathrm{s}_{1}{ }^{2}+\mathrm{s}_{2}{ }^{2}=\mathrm{s}_{3}{ }^{2} & \sqrt{ } 225=\mathrm{s}_{3}{ }^{2} \\
12^{2}+9^{2}=\mathrm{s}_{3}{ }^{2} & 15=\mathrm{s}_{3} \\
144+81=\mathrm{s}_{3}{ }^{2} & \\
225=\mathrm{s}_{3}{ }^{2} &
\end{array}
$$

Finding Surface Area - Cylinder

Finding Surface Area - Cylinder $S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$

Finding Surface Area - Cylinder

 $S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$The base shape is a circle, so use the circle area/perimeter formula $S A=\left(2 \times \pi \times r^{2}\right)+(\pi \times d \times H)$

Finding Surface Area - Cylinder

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a circle, so use the circle area/perimeter formula SA $=\left(2 \times \pi \times r^{2}\right)+(\pi \times d \times H)$
$S A=(2 \times 3.14 \times 0.55 \times 0.55)+(3.14 \times 1.1 \times 1.4)$

Finding Surface Area - Cylinder

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a circle, so use the circle area/perimeter formula SA $=\left(2 \times \pi \times r^{2}\right)+(\pi \times d \times H)$
$S A=(2 \times 3.14 \times 0.55 \times 0.55)+(3.14 \times 1.1 \times 1.4)$
$S A=1.8997+4.8356$

Finding Surface Area - Cylinder

$S A=\left(2 \times A_{b}\right)+\left(P_{b} \times H\right)$
The base shape is a circle, so use the circle area/perimeter formula
SA $=\left(2 \times \pi \times r^{2}\right)+(\pi \times d \times H)$
$S A=(2 \times 3.14 \times 0.55 \times 0.55)+(3.14 \times 1.1 \times 1.4)$
$S A=1.8997+4.8356$
$S A=6.74 \mathrm{~m}^{2}$

Chapter 7

Volume

What is volume?

What is volume?

Volume is the amount that a shape can hold inside of itself.

What is volume?

Volume is the amount that a shape can hold inside of itself.

Volume is measured in units ${ }^{3}$.

What is volume?

Volume is the amount that a shape can hold inside of itself.

Volume is measured in units ${ }^{3}$.

The formula for volume is $\rightarrow \quad V=A_{b} \times H$

Area Formulas

Area Formulas

Area Formulas

Area Formulas

Finding Volume - Rectangular Prism

Finding Volume - Rectangular Prism

Finding Volume - Rectangular Prism

$$
V=A_{b} \times H
$$

Finding Volume - Rectangular Prism

$$
V=A_{b} \times H
$$

The base shape is a rectangle, so use the rectangle formula.
$\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{H}$

Finding Volume - Rectangular Prism

$$
V=A_{b} \times H
$$

The base shape is a rectangle, so use the rectangle formula.
$\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{H}$
$V=10 \times 3 \times 4$

Finding Volume - Rectangular Prism

$$
V=A_{b} \times H
$$

The base shape is a rectangle, so use the rectangle formula.
$\mathrm{V}=\mathrm{l} \times \mathrm{w} \times \mathrm{H}$
$V=10 \times 3 \times 4$
$V=120 \mathrm{in}^{3}$

Finding Volume - Triangular Prism

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

The base shape is a triangle, so use the triangle formula.

$$
V=\frac{b x h}{2} \times H
$$

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

The base shape is a triangle, so use the triangle formula.

$$
V=\frac{b x h}{2} \times H
$$

$$
V=\frac{12 \times 9}{2} \times 18
$$

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

The base shape is a triangle, so use the triangle formula.

$$
V=\frac{b x h}{2} \times H
$$

$$
V=\frac{12 \times 9}{2} \times 18
$$

$$
V=\frac{108}{2} \times 18
$$

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

The base shape is a triangle,
so use the triangle formula.

$$
V=\frac{b \times h}{2} \times H
$$

$$
V=\frac{12 \times 9}{2} \times 18
$$

$$
V=\frac{108}{2} \times 18
$$

Finding Volume - Triangular Prism

$$
V=A_{b} \times H
$$

The base shape is a triangle,
so use the triangle formula.
$V=\frac{b \times h}{2} \times H$
$V=\frac{12 \times 9}{2} \times 18$
$V=\frac{108}{2} \times 18$
$V=54 \times 18$
$V=972 \mathrm{~cm}^{3}$

Finding Volume - Cylinder

Finding Volume - Cylinder

$$
V=A_{b} \times H
$$

Finding Volume - Cylinder

$$
V=A_{b} \times H
$$

The base shape is a circle, so use the circle formula.
$\mathrm{V}=\pi \mathrm{x} r^{2} \times \mathrm{H}$

Finding Volume - Cylinder

$$
V=A_{b} \times H
$$

The base shape is a circle, so use the circle formula.
$V=\pi x r^{2} \times H$
$\mathrm{V}=3.14 \times 0.55 \times 0.55 \times 1.4$

Finding Volume - Cylinder

$$
V=A_{b} \times H
$$

The base shape is a circle, so use the circle formula.
$V=\pi x r^{2} \times H$
$V=3.14 \times 0.55 \times 0.55 \times 1.4$

$$
V=1.33 \mathrm{~m}^{3}
$$

Finding Volume - Combined Shapes

Finding Volume - Combined Shapes

$$
V_{\text {big }}=A_{b} \times H \quad-V_{\text {small }}=A_{b} \times H
$$

Finding Volume - Combined Shapes

$$
V_{\text {big }}=A_{b} \times H \quad-\quad V_{\text {small }}=A_{b} \times H
$$

Both base shapes are rectangles, so use the rectangle formula.
lxwxH - lxwxH

Finding Volume - Combined Shapes

$$
V_{\text {big }}=A_{b} \times H \quad-\quad V_{\text {small }}=A_{b} \times H
$$

Both base shapes are rectangles, so use the rectangle formula.
$l \times w \times H \quad-\quad l x w \times H$
$5 \times 5 \times 8 \quad-\quad 2 \times 2 \times 8$

Finding Volume - Combined Shapes

$$
V_{\text {big }}=A_{b} \times H \quad-\quad V_{\text {small }}=A_{b} \times H
$$

Both base shapes are rectangles, so use the rectangle formula.

Finding Volume - Combined Shapes

$$
V_{\text {big }}=A_{b} \times H \quad-\quad V_{\text {small }}=A_{b} \times H
$$

Both base shapes are rectangles, so use the rectangle formula.

Chapter 6

Fraction Operation

Converting fractions

Mixed Numbers to Improper Fractions

Converting Fractions

Mixed Numbers to Improper Fractions

1. Multiply the denominator (bottom number) by the whole number.
2. Add the product from step 1 to the numerator. This becomes the new numerator.
3. Denominator remains the same.

Converting fractions

(2)

 2
 $\frac{1}{5}$

Converting Fractions

Improper Fractions to Mixed Numbers

Converting Fractions

Improper Fractions to Mixed Numbers

1. Divide the numerator (top number) by the denominator (bottom number).

- The whole number quotient is the new whole number in the Mixed Fraction

1. Multiply the whole number from step 1 to the denominator and subtract it from the numerator.

- The remainder becomes the new numerator.

1. Denominator remains the same.

Converting Fractions

Improper Fractions to Mixed Numbers
 者

-

To

\qquad
\qquad
\qquad
\qquad
\qquad
\qquad0

2

保

Converting Fractions

Whole Numbers into Fractions

Converting Fractions

Whole Numbers into Fractions

You can turn a whole number into a fraction by putting it over the number one.

This doesn't change the number, because anything divided by 1 is itself.

Adding and Subtracting Fractions

Adding and Subtracting Fractions

1. Convert all fractions to improper/proper fractions
2. Find the Lowest Common Multiple (LCM) to determine the new denominator
3. Convert all the fractions into equivalent fractions with the LCM as the new denominator

- Multiply both the numerator and denominator by the same value

4. Add or Subtract the numerators using the Integer Operation Rules. Keep the denominator the same.
5. Simplify by dividing the numerator and denominator by the same value.

Adding and Subtracting Fractions

Multiplying Fractions

Multiplying Fractions

1. Convert all fractions to improper/proper fractions
2. Multiply the numerators by each other using Integer Operation Rules.
3. Multiply the denominator by each other using Integer Operation Rules..
4. Simplify by dividing the numerator and denominator by the same value.

Dividing Fractions

Dividing Fractions

1. Convert all fractions to improper/proper fractions
2. Apply KiSS Method

- Keep first fraction
- Switch sign from division to multiplication
- Switch your second fraction by flipping it.

1. Multiply the numerators by each other using Integer Operation Rules.
2. Multiply the denominator by each other using Integer Operation Rules.
3. Simplify by dividing the numerator and denominator by the same value.

Fraction Operation Practice

$$
\left(\frac{1}{3}-\frac{1}{6}\right) \div \frac{11}{18}
$$

$\frac{1}{10}+\frac{6}{10} \times \frac{3}{1}$

Chapter 8

Integers

Adding Integers

Adding Integers

Same Signs: Add the values of the numbers together and use the same sign as the values.

Adding Integers

Same Signs: Add the values of the numbers together and use the same sign as the values.

Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the largest value.

Adding Integers \rightarrow Practice

$$
-2+-5 \quad 3+-8 \quad-23+-4 \quad 52+-15
$$

Subtracting Integers

Subtracting Integers

KiSS \rightarrow Keep it, Switch it, Switch it.
\rightarrow Keep the sign of the first value
\rightarrow Switch the subtraction to an addition sign
\rightarrow Switch the sign of the second value
\rightarrow Continue as an addition problem
Same Signs: Add the values of the numbers together and use the same sign as the values.

Different Signs: Subtract the smaller value from the larger value. Use the sign of the number with the largest value.

Subtracting Integers

$$
2-(-7) \quad-9-3 \quad-12-(-15) \quad 44-36
$$

Multiplying and Dividing Integers

Multiplying and Dividing Integers

Same Signs: Multiply or Divide as normal. The result is a positive.

Different Signs: Multiply or Divide as normal. The result is a negative.

Multiplying and Dividing Integers \rightarrow Practice

$$
\begin{array}{llll}
-2 \times 5 & -12 \times-4 & 8 \times 7 & 9 \times-6
\end{array}
$$

$$
-12 \div 4 \quad-144 \div-12 \quad 48 \div 8 \quad 32 \div-4
$$

Chapten 9

Linear Relations

Table of Values

Figure 3

Table of Values

Figure Number (f)	Number of Blocks (b)
1	
2	
3	

Table of Values

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

Table of Values

Figure 3
How do you create an equation from a Table of Values?

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

Table of Values

How do you create an equation from a Table of Values?

1. Look at the gaps (how much do the blocks increase each time).
2. This is the coefficient of the variable. Also called the slope.

Table of Values

How do you create an equation from a Table of Values?

1. Look at the gaps (how much do the blocks increase each time).
2. This is the coefficient of the variable. Also called the slope.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

3. See how you need to alter the product to receive the desired value.
Gap • figure number +/- what gives the number of blocks?

Gap $=3$
3 - figure number + 1

Table of Values

How do you create an equation from a Table of Values?

1. Look at the gaps (how much do the blocks increase each time).
2. This is the coefficient of the variable. Also called the slope.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

3. See how you need to alter the product to receive the desired value.
Gap • figure number +/- what gives the number of blocks?

Gap $=3$
$3 \cdot$ figure number + 1
$b=3 f+1$

Table of Values

How to determine if a Table of Values shows a Linear relation.

Table of Values

How to determine if a Table of Values shows a Linear relation.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

Table of Values

How to determine if a Table of Values shows a Linear relation.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

1. Look at the gaps between each column (how much do the blocks increase each time).

Table of Values

How to determine if a Table of Values shows a Linear relation.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

1. Look at the gaps between each column (how much do the blocks increase each time).

Gap between each figure numbers = +1

Gap between each
number of blocks = +3

Table of Values

How to determine if a Table of Values shows a Linear relation.

Figure Number (f)	Number of Blocks (b)
1	4
2	7
3	10

1. Look at the gaps between each column (how much do the blocks increase each time).
2. If EACH gap between values is consistent, then the pattern is linear.

Gap between each figure numbers = +1

Gap between each
number of blocks = +3

Table of Values

Creating a Table of Values from an Equation

Table of Values

Creating a Table of Values from an Equation

$5 x+4=$

x	y

Table of Values

Creating a Table of Values from an Equation

$5 x+4=$

x	y

Substitute the values for x into the equation and solve for y.

Table of Values

Creating a Table of Values from an Equation

$5 x+4=$

x	y
0	4
1	9
2	14
3	19

Substitute the values for x into the equation and solve for y.
$x=0 \Rightarrow 5(0)+4 \Rightarrow 4$
$x=1 \Rightarrow 5(1)+4 \Rightarrow 9$
$x=2 \Rightarrow 5(2)+4 \Rightarrow 14$
$x=3 \Rightarrow 5(3)+4 \Rightarrow 19$

Graphing Linear Relations

What do you label the axis?

Graphing Linear Relations

What do you label the axis?

Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Graphing Linear Relations

Graphing from a Table of Values

x	y
0	1
1	3
2	5
3	7
4	9

Graphing Linear Relations

Graphing from an Equation

Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Graphing Linear Relations

Graphing from an Equation

What does this equation mean?

$$
b=3 f-1
$$

Slope-Intercept Form

- Coefficient is the slope (how each point move on the graph; Rise-over-Run)
- Constant is y-Intercept (where the graph crosses the y-axis). It is the value of y when x is 0 .

Graphing Linear Relations

Creating a Table of Value from a Graph

Graphing Linear Relations

Creating a Table of Value from a Graph

Graphing Linear Relations

Creating a Table of Value from a Graph

x	y
-2	-5
-1	-3
0	-1
1	1
2	3
3	5

Graphing Linear Relations

Creating a Table of Value from a Graph

x	y
-2	-5
-1	-3
0	-1
1	1
2	3
3	5

What would the equation be?

Graphing Linear Relations

Creating a Table of Value from a Graph

x	y
-2	-5
-1	-3
0	-1
1	What would the equation be? $=2 x-1$
2	3
3	5

Graphing Linear Relations

Horizontal Graphs

Graphing Linear Relations

Horizontal Graphs

Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

In horizontal graphs, the y value does not change.
$x=1, y=2$
$x=2, y=2$
$x=3, y=2$

Graphing Linear Relations

Vertical Graphs

Graphing Linear Relations

Horizontal Graphs

Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

Graphing Linear Relations

Horizontal Graphs
What value would be constant? (not change)

In horizontal graphs, the y value does not change.
$x=1, y=1$
$x=1, y=2$
$x=1, y=3$

Chapter 10

Solving Linear Equations

CHAPTER 10 - SOLVING LiNear Equations

Inverse Functions

Inverse functions reverse one another. They complete the opposite operation.

$$
\text { Subtraction } \rightarrow
$$

Addition \rightarrow
Multiplication \rightarrow
Division \rightarrow
Squaring \rightarrow
Square Root \rightarrow

CHAPTER 10 - Solving Linear Equations

Inverse Functions

Inverse functions reverse one another. They complete the opposite operation.

Subtraction \rightarrow Addition
Addition \rightarrow Subtraction
Multiplication \rightarrow Division
Division \rightarrow Multiplication
Squaring \rightarrow Square Root
Square Root \rightarrow Squaring

How to Solve Equations

To solve equations, you want to isolate for the variable by inverseing all of the operations that were done to it in reverse order.
ie. $5 x-4=31$
What does this equation mean?

How do you solve it?

How to Solve Equations

To solve equations, you want to isolate for the variable by inverseing all of the operations that were done to it in reverse order.
ie. $5 x-4=31$
What does this equation mean?
Means: You are multiplying a value by 5, then subtracting 4 to get 31.

How do you solve it?

How to Solve Equations

To solve equations, you want to isolate for the variable by inverseing all of the operations that were done to it in reverse order.
ie. $5 x-4=31$
What does this equation mean?
Means: You are multiplying a value by 5 , then subtracting 4 to get 31 .

How do you solve it?
To Solve: Do the inverse of each operation in reverse order.
To Solve: Start at 31, Add 4, then divide by 5 to get the original value of x.

Steps to Solve

What are the steps to solve equations?

Steps to Solve

What are the steps to solve equations?

1. Simplify

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not attached to the variable

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not attached to the variable

3. Multiply/Divide Coefficient

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not attached to the variable

3. Multiply/Divide Coefficient

- The number with the variable

Steps to Solve

What are the steps to solve equations?

1. Simplify

- Remove Brackets
- Bring variables to one side of equation

2. Add/Subtract Constant

- The value on the same side as the variable, but is not attached to the variable

3. Multiply/Divide Coefficient

- The number with the variable

4. Check by plugging you answer back in for the variable and solving

Practice Equations

$$
7 x+11=88
$$

Practice Equations

$$
2 x-6=-8
$$

Practice Equations

$$
\frac{x}{4}+5=-125
$$

Practice Equations

$$
2(3 x-7)=58
$$

Chapter 11

Probability

Types of Graphs and Their Use
What is Probability?

Types of Graphs and Their Use

What is Probability?

- the likelihood or chance of an event occurring

Types of Graphs and Their Use
What is a sample space?

Types of Graphs and Their Use

What is a sample space?

- all possible outcomes of a probability experiment

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

Spin 1	Spin 2	Outcome

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

Spin 1	Spin 2	Outcome
Purple		
Yyy		
Green		
Yyy		

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

Spin 1	Spin 2	Outcome
	Purple	
	Yellow	
Yellow	Green	
	Purple	
	Yellow	
	Green	
	Purple	
	Yellow	

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

Spin 1	Spin 2	Outcome
	Purple	P, P
	Yellow	P, Y
	Green	P, G
Yellow	Purple	Y, P
	Yellow	Y, Y
	Green	Y, G
Green	Purple	G, P
	Yellow	G, Y

Tree Diagram

Create a Tree Diagram to determine the sample space of spinning the spinner two times.

How big is the sample space?

Spin 1	Spin 2	Outcome
Purple	Purple	P, P
	Yellow	P, Y
	Green	P, G
Yellow	Purple	Y, P
	Yellow	Y, Y
	Green	Y, G
Green	Purple	G, P
	Yellow	G, Y

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6	
1							
2							
	3						

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

| Y, R | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1,1 | 1,2 | 1,3 | 1,4 | 1,5 | 1,6 |
| 2 | | | | | | |
| 2 | | | | | | |
| 2 | | | | | | |
| 6 | | | | | | |

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3						
4						
5						
6						

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6	
1	1,1	1,2	1,3	1,4	1,5	1,6	
2	2,1	2,2	2,3	2,4	2,5	2,6	
	3	3,1	3,2	3,3	3,4	3,5	3,6

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5						
6						

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6						

Probability Tables

Create a Probability Table to determine the sample space of throwing the yellow and red dice

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,5

How big is the sample space?

Determining Probabilities

What is the probability of getting the same colour for both spins?

Determining Probabilities

What is the probability of getting the same colour for both spins?

1. First determine the sample space

Determining Probabilities

What is the probability of getting the same colour for both spins?

	Spin 1	Spin 2	Outcome
	Purple	Purple	P, P
		Yellow	P, Y
		Green	P, G
	Yellow	Purple	Y, P
		Yellow	Y, Y
		Green	Y, G
	Green	Purple	G, P
		Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space?

Determining Probabilities

What is the probability of getting the same colour for both spins?

\square	Spin 1	Spin 2	Outcome
-		Purple	P, P
	Purple	Yellow	P, Y
		Green	P, G
		Purple	Y, P
	Yellow	Yellow	Y, Y
		Green	Y, G
		Purple	G, P
	Green	Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space? 9
2. Located all of the desired outcomes. How many are there?

Determining Probabilities

What is the probability of getting the same colour for both spins?

\square	Spin 1	Spin 2	Outcome
		Purple	P, P
	Purple	Yellow	P, Y
		Green	P, G
		Purple	Y, P
	Yellow	Yellow	Y, Y
		Green	Y, G
		Purple	G, P
	Green	Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space? 9
2. Located all of the desired outcomes. How many are there?

Determining Probabilities

What is the probability of getting the same colour for both spins?

\square	Spin 1	Spin 2	Outcome
-		Purple	P, P
	Purple	Yellow	P, Y
		Green	P, G
		Purple	Y, P
	Yellow	Yellow	Y, Y
		Green	Y, G
		Purple	G, P
	Green	Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space? 9
2. Located all of the desired outcomes. How many are there? 3
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.

Determining Probabilities

What is the probability of getting the same colour for both spins?

\square	Spin 1	Spin 2	Outcome
-		Purple	P, P
	Purple	Yellow	P, Y
		Green	P, G
		Purple	Y, P
	Yellow	Yellow	Y, Y
		Green	Y, G
		Purple	G, P
	Green	Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space? 9
2. Located all of the desired outcomes. How many are there? 3
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.
$3 / 9 \rightarrow 1 / 3$

Determining Probabilities

What is the probability of getting the same colour for both spins?

	Spin 1	Spin 2	Outcome
		Purple	P, P
	Purple	Yellow	P, Y
		Green	P, G
		Purple	Y, P
	Yellow	Yellow	Y, Y
		Green	Y, G
		Purple	G, P
	Green	Yellow	G, Y
		Green	G, G

1. First determine the sample space. How large is the sample space? 9
2. Located all of the desired outcomes. How many are there? 3
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.
$3 / 9 \rightarrow 1 / 3$
$P($ double colours $)=1 / 3$

Probability Tables

What is the probability of rolling a sum of 7 ?

Probability Tables

What is the probability of rolling a sum of 7 ?

1. First determine the sample space.

Probability Tables

What is the probability of rolling a sum of 7 ?

1. First determine the sample space. How large is the sample space?

Probability Tables

What is the probability of rolling a sum of 7 ?

Y, R	1	2	3	4	5	6
1	1,1	1, 2	1,3	1, 4	1, 5	1, 6
2	2,1	2, 2	2,3	2, 4	2,5	2, 6
3	3,1	3, 2	3, 3	3, 4	3, 5	3,6
4	4, 1	4, 2	4, 3	4, 4	4, 5	4, 6
5	5,1	5, 2	5,3	5,4	5,5	5,6
6	6,1	6, 2	6,3	6, 4	6,5	6, 5

1. First determine the sample space. How large is the sample space? 36
2. Located all of the desired outcomes.

Probability Tables

What is the probability of rolling a sum of 7 ?

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,5

1. First determine the sample space. How large is the sample space? 36
2. Located all of the desired outcomes. How many are there?

Probability Tables

What is the probability of rolling a sum of 7 ?

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,5

1. First determine the sample space. How large is the sample space? 36
2. Located all of the desired outcomes. How many are there? 6
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.

Probability Tables

What is the probability of rolling a sum of 7 ?

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,5

1. First determine the sample space. How large is the sample space? 36
2. Located all of the desired outcomes. How many are there? 6
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.

$$
6 / 36 \rightarrow 1 / 6
$$

Probability Tables

What is the probability of rolling a sum of 7 ?

Y, R	1	2	3	4	5	6
1	1,1	1,2	1,3	1,4	1,5	1,6
2	2,1	2,2	2,3	2,4	2,5	2,6
3	3,1	3,2	3,3	3,4	3,5	3,6
4	4,1	4,2	4,3	4,4	4,5	4,6
5	5,1	5,2	5,3	5,4	5,5	5,6
6	6,1	6,2	6,3	6,4	6,5	6,5

1. First determine the sample space. How large is the sample space? 36
2. Located all of the desired outcomes. How many are there? 6
3. Determine the probability by creating a fraction of desired out of total outcomes. Simply.
$6 / 36 \rightarrow 1 / 6$
$P($ sum 7$)=1 / 6$

Experimental vs. Theoretical Probability

What is Theoretical Probability?

Experimental vs. Theoretical Probability

What is Theoretical Probability?
Theoretical probability is the likelihood of a particular event happening in a perfectly fair situation.

Based on what could happen.

Experimental vs. Theoretical Probability

What is Experimental Probability?

Experimental vs. Theoretical Probability

What is Experimental Probability?
Experimental probability is the actually number of times a particular event occurred in a probability experiment.

Based on what actually happened.

Chapter 12

Tesselations

Types of Transformations

What are Translations?

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Determining New Coordinates:
A translation of 7 units up and 3 units left.
(x, y)

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Determining New Coordinates:
A translation of 7 units up and 3 units left.
(x, y)

$$
(x-3, y+7)
$$

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Determining New Coordinates:
A translation of 7 units up and 3 units left.
$(5,9)$

$$
(x-3, y+7)
$$

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Determining New Coordinates:
A translation of 7 units up and 3 units left.
$(5,9)$
$(5-3,9+7)$

Types of Transformations

What are Translations?

Translations are slides where the entire image moves the same amount of spaces left/right and up/down.

Determining New Coordinates:
A translation of 7 units up and 3 units left.
$(5,9)$
(5-3,9 + 7)
$(2,16)$

Types of Transformations

What is a Reflection?

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Determining New Coordinates:

A reflection about the y-axis
(x, y)

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Determining New Coordinates:

A reflection about the y-axis
(x, y)
$(-x, y)$

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Determining New Coordinates:

A reflection about the y-axis
$(-2,-3)$
$(-x, y)$

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Determining New Coordinates:

A reflection about the y-axis

Types of Transformations

What is a Reflection?

Reflections are when the entire image is flipped or reflected across a line.

Determining New Coordinates:

A reflection about the y-axis
(2, -3)c

Types of Transformations

What is a Rotation?

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Determining New Coordinates:

$90^{\circ} \mathrm{CW} / 270^{\circ} \mathrm{CCW}$	$180^{\circ} \mathrm{CW} / \mathrm{CCW}$	$270^{\circ} \mathrm{CW} / 90^{\circ} \mathrm{CCW}$
(x, y)	(x, y)	(x, y)

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Determining New Coordinates:

$90^{\circ} \mathrm{CW} / 270^{\circ} \mathrm{CCW}$	$180^{\circ} \mathrm{CW} / \mathrm{CCW}$	$270^{\circ} \mathrm{CW} / 90^{\circ} \mathrm{CCW}$
(x, y)	(x, y)	(x, y)
$(y,-x)$	$(-y,-x)$	$(-y, x)$

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Determining New Coordinates:

$90^{\circ} \mathrm{CW} / 270^{\circ} \mathrm{CCW}$	$180^{\circ} \mathrm{CW} / \mathrm{CCW}$	$270^{\circ} \mathrm{CW} / 90^{\circ} \mathrm{CCW}$
$(4,5)$	$(-7,2)$	$(3,-8)$
$(y,-x)$	$(-y,-x)$	$(-y, x)$

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Determining New Coordinates:

$90^{\circ} \mathrm{CW} / 270^{\circ} \mathrm{CCW}$	$180^{\circ} \mathrm{CW} / \mathrm{CCW}$	$270^{\circ} \mathrm{CW} / 90^{\circ} \mathrm{CCW}$
$(4,5)$	$(-7,2)$	$(3,-8)$
$(5,-4)$	$(-2,-(-7))$	$(-(-8), 3)$

Types of Transformations

What is a Rotation?

Rotations are when the entire image is turned or rotated around a central point.

Determining New Coordinates:

$90^{\circ} \mathrm{CW} / 270^{\circ} \mathrm{CCW}$	$180^{\circ} \mathrm{CW} / \mathrm{CCW}$	$270^{\circ} \mathrm{CW} / 90^{\circ} \mathrm{CCW}$
$(4,5)$	$(-7,2)$	$(3,-8)$
$(5,-4)$	$(-2,-(-7))$	$(-(-8), 3)$
	$(-2,7)$	$(8,3)$

Tessellations

What does it mean is something tessellates?

Tessellations

What does it mean is something tessellates?

When congruent copies of a shape cover a plane with no overlaps or gaps, we say the shape tessellates.

The design created is called a tessellation.

Tessellations

What does it mean is something tessellates?

When congruent copies of a shape cover a plane with no overlaps or gaps, we say the shape tessellates.

The design created is called a tessellation.

For copies of a polygon to tessellate, the sum of the angles at any point where vertices meet must be 360°. We say the polygons surround a point.

