\qquad
\qquad

3 Chapter Review

Key Words

For \# 1 to \#5, fill in the blanks. Use the word list.
hypotenuse perfect square prime factorization Pythagorean relationship square root

1. The \qquad
\qquad of 36 is 6 .
2. The number 25 is a \qquad
\qquad because it is the product of the same two factors, $5 \times 5=25$.
3. In a right triangle, the longest side is called the \qquad -.
4. The sides of a right triangle are a, b, and c. The longest side is c. The equation $c^{2}=a^{2}+b^{2}$ is known as the \qquad
\qquad
5. The \qquad
\qquad of 18 is $2 \times 3 \times 3$.

3.1 Squares and Square Roots, pages 108-116

6. Find the square of each number.
a) 6^{2}
b) 11^{2}
7. Find each square root.
a) $\sqrt{100}$
b) $\sqrt{144}$
8. Lisa needs at least $17 \mathrm{~m}^{2}$ of fabric to make curtains. Is this square piece of fabric large enough? Show how you can prove your answer.

\qquad
\qquad

3.2 Exploring the Pythagorean Relationship, pages 118-124

9. A triangle has squares on each of its sides.
a) What is the length of each of the 3 sides of the triangle?

b) How could you show if this triangle is a right triangle?
10. A triangle has side lengths $x=9 \mathrm{~cm}, y=12 \mathrm{~cm}$, and $z=15 \mathrm{~cm}$. Is it a right triangle?
$x=$ \qquad

$$
x^{2}=\square{ }^{2}
$$

$y=$ \qquad

$$
y^{2}=\square \square^{2}
$$

$$
=
$$

$$
z=
$$

\qquad

$$
z^{2}=\square^{2}
$$

$=$ \qquad
\qquad

The sum of the area of the 2 small squares = \qquad $+$ \qquad
$=$ \qquad
Does this sum equal the area of the large square? Circle YES or NO.
It \qquad a right triangle.
(is or is not)

3.3 Estimating Square Roots, pages 126-131

11. What is an estimate for $\sqrt{10}$? Round your answer to 1 decimal place.

Perfect squares on either side of 10 :
\qquad

\qquad
$\sqrt{10}$ is between \qquad and \qquad \longleftrightarrow

The closer square root is \qquad . An estimate is \qquad _.
\qquad
\qquad
12. Cliffmount School is creating square invitations for its 50th anniversary party. There are 3 possible designs.
a) Estimate a whole number area for the middle invitation: \qquad

$25 \mathrm{~cm}^{2}$

\qquad cm^{2}

$36 \mathrm{~cm}^{2}$
b) What is the side length of the smallest invitation?
c) What is the side length of the largest invitation? \qquad

3.4 Using the Pythagorean Relationship, pages 133-138

13. Round each answer to the nearest tenth of a centimetre where appropriate.
a) What is the length of the hypotenuse in $\triangle \mathrm{ABC}$?
$A B=$ \qquad units
$\mathrm{BC}=$ \qquad units

$$
\mathrm{AC}^{2}=\mathrm{AB}^{2}+\mathrm{BC}^{2}
$$

$$
\mathrm{AC}^{2}=\square^{2}+\square^{2}
$$

$$
\mathrm{AC}^{2}=
$$

\qquad $+$ \qquad
$\mathrm{AC}^{2}=$ \qquad

$\mathrm{AC}=$ \qquad

b) What is the perimeter of $\triangle \mathrm{ABC}$

\qquad
\qquad
14. Find the missing side length of each triangle.
a)

b)

$$
\begin{aligned}
c^{2}=a^{2}+b^{2} & \leftarrow \text { Formula } \rightarrow \\
& \leftarrow \text { Substitute } \rightarrow \\
& \leftarrow \text { Solve } \rightarrow
\end{aligned}
$$

3.5 Applying the Pythagorean Relationship, pages 140-146

15. A 4-m ladder is being used in Romeo and Juliet.

The bottom of the ladder will be placed 1 m from the base of Juliet's house.
a) How far up the wall will the ladder reach? Show your work.

Sentence: \qquad
b) The height from the base of the building to Juliet's window is 3.9 m .

Will the ladder reach the window?

