\qquad
\qquad

Communicate the Ideas

8.5 Applying Integer Operations

1. When Lance solved the expression $(-2) \times(4+5)+3$, his answer was 0 .
a) Solve the expression to see if Lance was right.
$(-2) \times(4+5)+3$
Brackets first.
Multiply.
Add.
b) Was Lance correct? Circle YES or NO.
c) If not, what did Lance do wrong?

Lance's work:
$(-2) \times(4+5)+3$
$=(-2) \times 4+8$
$=-8+8$
$=0$

Cheak Your Understanding

Practise

2. Calculate using the order of operations.
a) $(+30) \div(-$

$$
=
$$

\qquad $+(-20) \div(-1)$
$=$ \qquad $+$ \qquad
Divide.
Divide.
Add.
$=$ \qquad
b) $(-2) \times[(+\underbrace{1})+(+2)]+(-7)$

$$
=(-2) \times
$$ $+(-7)$

$=$ \qquad $+(-7)$

Brackets.

Multiply.
Add.
$=$ \qquad
\qquad
\qquad
3. Calculate.
a) $(4-7) \times 2+12$
$=$ \qquad $\times 2+12$
$=$ \qquad $+12$
$=$ \qquad
b) $-10 \div 5+3 \times(-4)$
\qquad $+3 \times(-4)$
\qquad $+$ \qquad
\qquad
c) $3 \times(-4)-(+8) \div(-4)$
d) $(+4) \div(-2)+(+6)$
$=$ \qquad $-(+8) \div(-4)$
$=$ \qquad $-$ \qquad
$=$ \qquad $+(\square)$
$=$ \qquad

Apply

4. The temperature of a new freezer, before it is plugged in, is $22^{\circ} \mathrm{C}$.

When it is plugged in, the temperature drops to $-10^{\circ} \mathrm{C}$.
a) Find the temperature change.

Start temperature of $22^{\circ} \mathrm{C}=$ \qquad
End temperature of $-10^{\circ} \mathrm{C}=(\square)$
Temperature change $=$ end temperature - start temperature

Sentence: \qquad
b) When the freezer is plugged in, the temperature inside drops by $4^{\circ} \mathrm{C}$ per hour.

How many hours does it take for the freezer to reach $-10^{\circ} \mathrm{C}$?
Temperature drop of $4{ }^{\circ} \mathrm{C}=(-$ \qquad
Number of hours $=$ temperature change \div temperature drop

Sentence: \qquad
\qquad
\qquad
5. The daily low temperatures in Prince Rupert, British Columbia, were $-4^{\circ} \mathrm{C},+{ }^{\circ} \mathrm{C},-2^{\circ} \mathrm{C},+1^{\circ} \mathrm{C}$, and $-6^{\circ} \mathrm{C}$. What is the mean temperature?
Add the integers.

Divide by the number of days.
$=$ \qquad

The mean of the daily low temperatures was \qquad ${ }^{\circ} \mathrm{C}$.
6. Earth's surface temperature is $15^{\circ} \mathrm{C}$.

The temperature increases by $25^{\circ} \mathrm{C}$ for each kilometre you travel below Earth's surface.
a) What is the temperature increase 1 km below the surface?

Sentence: \qquad
b) How much would you expect the temperature to increase 3 km below the surface?
$3 \mathrm{~km}=(\square)$
$25^{\circ} \mathrm{C} / \mathrm{km}=(+$ \qquad
\qquad

Sentence: \qquad

