Practice

- **1.** For each linear system, the value of one variable in the solution is given. Find the value of the other variable.
 - **a)** -x + 2y = 1
- 1
- 2
- Given: y = -1

3x + 3y = -12

- Substitute $y = \underline{\hspace{1cm}}$ in equation ①.
 - -x + 2y = 1

- **b)** -3x + y = 17
 - 2x + y = -8
- ① ②

Given: x = -5

Substitute $x = \underline{\hspace{1cm}}$ in equation ②.

$$2x + y = -8$$

y = _____

x = ____

2. Solve this linear system.

$$y = x + 6$$

1

$$3x - 2y = -13$$

- 2
- Substitute y = x + 6 in equation ②.

$$3x - 2y = -13$$

2

$$3x - 2(\underline{}) = -13$$

To find the value of y when $x = \underline{\hspace{1cm}}$, substitute in equation \mathfrak{D} .

$$y = x + 6$$

1

The solution is: x =____ and y =____

Verify the solution. In each equation, substitute: x =____ and y =____

$$y = x + 6$$

$$3x - 2y = -13$$

For each equation, L.S. _____ R.S.

So, the solution of the linear system is x =____ and y =____.

3. Solve this linear system. 3x + 2y = 25 $x - 2y = -5$	①	
So, solve equation ② for x . $x - 2y = -5$ ② $x = \underline{\hspace{1cm}}$		To find the value of x when $y = $, substitute in equation $x - 2y = -5$ ② $x - 2($) = -5
Substitute $x = 3x + 2y = 25$ 3() + 2y = 25	in equation	x = The solution is: $x = $ and $y =$
y = Verify the solution. In each equation, substitution $3x + 2y = 25$	ute: <i>x</i> = and <i>y</i> =	$\frac{1}{x-2y}=-5$

For each equation, L.S. _____ R.S. So, the solution of the linear system is x =____ and y =____.

4. a) Create a linear system to model this situation:

Michelle and Marty spend the afternoon at the local fair. Michelle rides the roller coaster 3 times and the super swing 5 times. She pays \$25. Marty rides the roller coaster 5 times and the super swing once. He pays \$27.

b) Solve this problem: What is the cost of each type of ride?

The solution is: ____ = ___ and ___ = ___ Use the data in the problem to verify the solution.

A roller coaster ride costs _____ and a super swing ride costs _____.