Practice

1. Write each equation in general form.

a)

$$y = 2x - 1$$

y - ____ + ___ = 0

In general form, the equation is:

to see and force the counting in

Move all terms to the _____ side.

Put the _____-term first.

Multiply by _____ so the ____-term is positive.

In general form, the equation is:

b)

$$y=-\frac{1}{3}x+4$$

c)

$$y + 1 = -\frac{2}{5}(x - 2)$$

In general form, the equation is:

In general form, the equation is:

2. Find the slope of each line.

a)
$$4x + y - 1 = 0$$

Write the equation in slope-intercept form.

$$4x + y - 1 = 0$$

Compare this equation with y = mx + b.

The slope of the line is: _____

Subtract _____ from each side.

Add _____ to each side.

b)
$$3x - 2y + 2 = 0$$

The slope of the line is: _____

3.	Find	the	x-	and	y-intercepts	of	each	line
┛.	HIIU	UIC	^-	and	y-intercepts	\circ	Cucii	III IC.

a)
$$4x + 5y + 20 = 0$$

To find the *x*-intercept, substitute: _____

To find the *y*-intercept, substitute: _____

The *x*-intercept is:

The *y*-intercept is: _____

b)
$$3x - 6y - 18 = 0$$

To find the *x*-intercept, substitute: _____

To find the *y*-intercept, substitute: _____

The x-intercept is: _____

The *y*-intercept is: _____

4. Use intercepts to graph 3x - 2y + 12 = 0.

To find the *x*-intercept, substitute:

To find the *y*-intercept, substitute:

The x-intercept is: _____

The *y*-intercept is: _____

5. Write this equation in slope-intercept form, then graph it: 3x + 4y - 16 = 0

$$3x + 4y - 16 = 0$$

Solve for y.

In slope-intercept form,

the equation is: