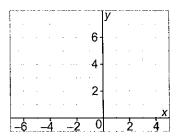
Practice

1. a) Write the slope and the coordinates of a point on the line $y - 4 = \frac{1}{2}(x + 2)$.

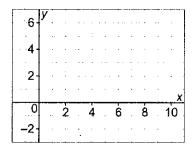

 $y_1 =$ _____, m =_____, and $x_1 =$ _____

So, the slope is _____, and the coordinates of a point are

b) Graph the line.

Plot the point P . . .

The slope is _____. So, the rise is and the run is



2. A line passes through F(-1, 8) and has slope -3. Write an equation for the line.

Use the slope-point form of the equation:

An equation is:

3. a) Graph the line that passes through U(2, -1), and has slope $\frac{5}{3}$.

b) Write an equation for the line in part a.

An equation is:

4. Write this equation in slope-intercept form: y + 5 = -4(x - 3)

y + 5 = -4(x - 3)

Expand.

y + 5 =_____

Solve for y.

y = _____

The equation is:

5. A line passes through P(-3, 4) and Q(3, -6). Write an equation for the line.

Use the formula: Slope =
$$\frac{y_2 - y_1}{x_2 - x_1}$$

In slope-point form, an equation is:

- **6.** An equation of a line is $y = -\frac{3}{8}x + 4$.
 - a) Write an equation for the line that passes through R(1, -3) and is perpendicular to $y = -\frac{3}{8}x + 4$.

The slope of the line is _____.

The slope of a perpendicular line is _____.

An equation of the line is:

b) Write an equation for the line that passes

through R(1, -3) and is parallel to $y = -\frac{3}{8}x + 4$.

An equation of the line is: