Practice

1. A line has slope -2 and y-intercept $\frac{3}{4}$.

Circle the correct equation for this line.

a)
$$y = \frac{3}{4}x - 2$$

b)
$$y = -2x + \frac{3}{4}$$

c)
$$y = 2x - \frac{3}{4}$$

2. For each equation, write the slope and y-intercept of its graph.

a)
$$y = 2x + 6$$

c)
$$y = \frac{1}{4}x$$

b)
$$y = -\frac{1}{2}x + \frac{3}{2}$$

d)
$$y = -x + 1$$

- **3.** Write an equation for the line that:
 - a) has slope -2 and y-intercept 3

Use:
$$y = mx + b$$

Substitute: $m = \underline{\hspace{1cm}}$ and $b = \underline{\hspace{1cm}}$

b) has slope
$$\frac{1}{4}$$
 and *y*-intercept -2

$$m =$$
 and $b =$

c) passes through S(0, -3) and has slope 4

The point S has x-coordinate and y-coordinate _____.

$$m =$$
 and $b =$ _____

d) passes through the origin and has slope $-\frac{3}{4}$

The *y*-intercept is: _____

$$m =$$
 and $b =$

An equation is:

4. Write an equation to describe this line.

Slope,
$$m =$$

y-intercept,
$$b =$$

In $y = mx + b$,

substitute:
$$m =$$
____ and $b =$ ____

- **5.** Graph the line with each given *y*-intercept and slope. Write an equation of the line.
 - a) y-intercept is 1, slope is $-\frac{3}{2}$

The rise is _____.
The run is _____.

$$\ln y = mx + b,$$

substitute:
$$m =$$
____ and $b =$ ____

An equation is:

b) y-intercept is -3, slope is $\frac{7}{4}$

An equation is: ______