10.3 Modelling and Solving Two.Step Equations

Communicate the Ideas

1. Describe how to isolate the variable when solving $\frac{n}{5}-12=6$.
\qquad
\qquad
2. Manjit thinks that the first step in solving the equation $\frac{x}{-4}+7=9$ is to multiply both sides of the equation by -4 . He writes:
$\frac{x}{-4} \times(-4)+7=9 \times(-4)$
Is he correct? Circle YES or NO.
Give 1 reason for your answer. \qquad
\qquad

Check Your Understanding

Practise

3. Write the equation for each diagram and name the constants.

Diagram			Equation
a)			Constants
b)			

\qquad Date: \qquad
4. Draw a model for $\frac{g}{5}-5=3$. Then, solve and check your answer.

Model:

Solution:

Check:

$$
g=
$$

Left Side	Right Side
$\frac{g}{2}-5$	3

5. Solve each equation using the reverse order of operations. Check your answers.
a)

$$
2+\frac{m}{3}=18
$$

b) $\frac{c}{-8}-8=-12$
 $+\frac{m}{3}=18-$

$$
\frac{m}{3}=
$$

\qquad

$$
\times \frac{m}{\not p}=
$$

\qquad \times

$$
m=
$$

Check:

Left Side	Right Side

Check:

Left Side	Right Side

\qquad

Apply

6. People 18 years old or younger need a certain number of hours of sleep each day.

The equation $s=12-\frac{a}{4}$ tells you how many hours of sleep they need.
$s=$ amount of sleep needed, in hours
$a=$ age of the person, in years
a) If Brian needs 10 h of sleep, how old is he?
b) Natasha is 13 years old. She gets 8 h of sleep a night. Is this enough sleep?

$$
s=12-\frac{a}{4}
$$

$$
s=12-\frac{a}{4}
$$

7. The cost of a concert ticket for a student is $\$ 2$ less than $\frac{1}{2}$ of the cost for an adult.
a) Write an expression for the cost of a concert ticket for a student.
$a=$ the cost for an adult
Cost of student ticket $=\frac{\square}{\square \square} a$

b) If the cost of a student concert ticket is $\$ 5$, how much does the adult ticket cost?

Equation: \qquad

Sentence: \qquad

